×

Framed matrices and \(A_{\infty}\)-bialgebras. (English) Zbl 1532.55008

Let \(m,n\in\mathbb{N},mn\geq2\). The biassociahedron \(KK_{n,m}\) is a contractible \((m+n-3)\)-dimensional polytope with a single top dimensional cell \(e^{m+n-1}\), particularly \[ KK_{1,n}\cong KK_{n,1} \] being Stasheff’s associahedron \(K_{n}\) [J. D. Stasheff, Trans. Am. Math. Soc. 108, 275–292, 293–312 (1963; Zbl 0114.39402)]. The authors’ construction of \(KK_{n,m}\) in [S. Saneblidze and R. Umble, Homology Homotopy Appl. 13, No. 1, 1–57 (2011; Zbl 1222.55006)], which is valid for all \(m\) when \(n\leq3\) and for all \(n\) when \(m\leq3\), extends M. Markl’s construction for \(m+n\leq6\) in [M. Markl, J. Pure Appl. Algebra 205, No. 2, 341–374 (2006; Zbl 1116.18011); J. Homotopy Relat. Struct. 10, No. 2, 205–238 (2015; Zbl 1351.18011)].
This paper introduces and applies the theory of framed matrices to construct \(KK_{m,n}\) for all \(m\) and \(n\). A framed matrix is an equivalence class of paths of generalized bipartition matrices whose entries involve augmented bipartitions, which are pairs of partitions \((A\mid\cdots\left\vert A_{r},B_{1}\right\vert \cdots\mid B_{r})\) of finite sets of positive integers in which \(A_{i}\) and \(B_{j}\) are possibly null. The paper constructs the bimultiplihedra \(JJ\), constructs the relative free matrad \(r\mathcal{H}_{\infty}\) as a \(\mathcal{H}_{\infty}\)-bimodule, realizes \(r\mathcal{H}_{\infty}\) as the cellular chains of \(JJ\), and defines a morphism of \(\mathcal{A}_{\infty}\)-bialgebras as a bimodule over \(\mathcal{H}_{\infty}\).
The main result is the following theorem.
Theorem 11.5. Let \(A\) be a free \(R\)-module, let \(B\) an \(\mathcal{A}_{\infty}\)-bialgebra, and let \(g:A\rightarrow B\) be a homology isomorphism. Then
(i)
(Existence) \(g\) induces an \(\mathcal{A}_{\infty}\)-bialgebra structure \(\omega_{A}\) on \(A\) and extends to a map \(G:\) \(A\Rightarrow B\) of \(\mathcal{A}_{\infty}\)-bialgebras, and
(ii)
(Uniqueness) \((\omega_{A},G)\) is unique up to isomorphism.

The proof follows from a new transfer algorithm based on the interpretation of \(JJ_{n,m}\) as a subdivision of \(KK_{n,m}\times I\).
As an application, the authors extend the Bott-Samelson isomorphism to an isomorphism of \(\mathcal{A}_{\infty}\)-bialgebras, determining the \(\mathcal{A}_{\infty}\)-bialgebrastructure of \(H_{\ast}(\Omega\Sigma X;\mathbb{Q})\) (Theorem 12.2). The \(\mathcal{A}_{\infty}\)-bialgebra structure of \(H_{\ast}(\Omega\Sigma X;\mathbb{Q})\) provides the first nontrivial rational homology invariant for \(\Omega\Sigma X\) (Corollary 12.3). For each \(n\geq2\), they construct a space \(X_{n}\), identifying an induced nontrivial \(\mathcal{A}_{\infty}\)-bialgebra operation \[ \omega_{2}^{n}:H^{\ast}(\Omega X_{n};\mathbb{Z}_{2})^{\otimes 2}\rightarrow H^{\ast}(\Omega X_{n};\mathbb{Z}_{2})^{\otimes n} \]

MSC:

55P35 Loop spaces
55P48 Loop space machines and operads in algebraic topology
55P99 Homotopy theory
52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)
52B11 \(n\)-dimensional polytopes

References:

[1] Baues, H.J.: The cobar construction as a Hopf algebra and the Lie differential. Invent. Math. 132, 467-489 (1998) · Zbl 0912.55015
[2] Berciano, A., Umble, R.: Some naturally occurring examples of \[A_{\infty}\]-bialgebras. J. Pure and Appl. Algebra. 215, 1284-1291 (2011) · Zbl 1252.18021
[3] Berikashvili, N.: On the differentials of spectral sequences (in Russian). Proc. Tbilisi Mat. Inst. 511-105 (1976)
[4] Bott, R., Samelson, H.: On the Pontrjagin product in spaces of paths. Comm. Math. Helv. 27, 320-337 (1953) · Zbl 0052.19301
[5] Carlsson, G., Milgram, R.J.: Stable homotopy and iterated loop spaces. In I.M. James (Ed.), Handbook of Algebraic Topology. Amsterdam, North-Holland, 505-583 (1995) · Zbl 0865.55006
[6] Ceballos, C., Pons, V.: The s-weak order and s-permutahedra. Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana), Séminaire Lotharingien de Combinatoire 82B. 76 (2019) · Zbl 1446.05094
[7] Chen, K.T.: Extension of \[C^{\infty}\] function algebra by integrals and Malcev completion of \[\pi_1\]. Advances in Math. 23 181-210 (1977) · Zbl 0345.58003
[8] Freeman, D., Umble, R. “Computing the Dimension of a Bipartiton Matrix. arXiv preprint , (2021)
[9] Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267-288 (1963) · Zbl 0131.27302
[10] Gerstenhaber, M., Voronov, A.A.: Higher operations on the Hochschild complex. Functional Analysis and its Applications. 29, 1-5 (1995) · Zbl 0849.16010
[11] Gugenheim, V.K.A.M.: On a perturbation theory for the homology of the loop space. J. Pure and Appl. Algebra. 25, 197-205 (1982) · Zbl 0487.55003
[12] Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Algebraic aspects of Chen’s twisting cochains. Illinois J. Math. 34, 485-502 (1990) · Zbl 0684.55006
[13] Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological algebra II. Illinios J. Math. 35, 359-373 (1991) · Zbl 0727.55012
[14] Huebschmann, J.: On the construction of \[A_{\infty}\]-structures. Georgian J. Math. 17, 161-202 (2010) · Zbl 1202.55007
[15] Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207, 245-280 (1991) · Zbl 0723.57030
[16] Husemoller, D.: Fibre Bundles. GTM 20, 3rd ed. New York, Springer-Verlag (1994)
[17] Kadeishvili, T.: On the homology theory of fibre Spaces. Russian Math. Survey. 35, 131-138 (1980)
[18] Kadeishvili, T., Saneblidze, S.: A cubical model of a fibration. J. Pure and Appl. Algebra. 196, 203-228 (2005) · Zbl 1069.55011
[19] Kadeishvili, T., Saneblidze, S.: The twisted Cartesian model for the double path space fibration. Georgian Math. J.22, 489-508 (2015) · Zbl 1332.55008
[20] Loday, J.-L., Ronco, M.: Hopf algebra of the planar binary trees.Adv. in Math. 139, 293-309 (1998) · Zbl 0926.16032
[21] Markl, M.: Transfering \[A_{\infty}\] (strongly homotopy associative) structures. Rendiconti del Circolo Matematico di Palermo, Serie II. 79, 139-151 (2006) · Zbl 1112.18007
[22] Markl, M.: A Resolution (minimal model) of the PROP for Bialgebras. J. Pure and Appl. Algebra. 205, 341-374 (2006) · Zbl 1116.18011
[23] Markl, M.: Bipermutahedron and Biassociahedron. J. Homotopy and Related Structures. 10, 205-238 (2013) · Zbl 1351.18011
[24] Markl, M., Shnider, S.: Associahedra, cellular W-construction and products of \[A_{\infty}\]-algebras. Trans. Amer. Math. Soc. 358, 6, 2353-2372 (2006) · Zbl 1093.18005
[25] Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, 96, Providence, AMS (2002) · Zbl 1017.18001
[26] Masuda, N., Thomas, H., Tonks, A., and Vallette, B.: The diagonal of the associahedra. J. l’École polytech. 8, 121-146 (2021) · Zbl 1455.18014
[27] Saneblidze, S.: On derived categories and derived functors. Extracta Mathematicae. 22, 315-324 (2007) · Zbl 1154.18008
[28] Saneblidze, S.: Filtered Hirsch algebras. Trans. R.M.I. 170, 114-136 (2016) · Zbl 1385.55011
[29] Saneblidze, S., Umble, R.: Diagonals on the permutahedra, multiplihedra and associahedra. J. Homology, Homotopy and Appl. 6, 363-411 (2004) · Zbl 1069.55015
[30] Saneblidze, S., Umble, R.: The biderivative and \[A_{\infty}\]-bialgebras. J. Homology, Homotopy and Appl. 7, 161-177 (2005) · Zbl 1088.55008
[31] Saneblidze, S., Umble, R.: Matrads, biassociahedra, and \[A_{\infty}\]-bialgebras. J. Homology, Homotopy and Appl. 13, 1-57 (2011) · Zbl 1222.55006
[32] Saneblidze, S., Umble, R.: Comparing Diagonals on the Associahedra, · Zbl 07860682
[33] Stasheff, J.: Homotopy associativity of \[H\]-spaces I, II. Trans. Am. Math. Soc. 108, 275-312 (1963) · Zbl 0114.39402
[34] Stasheff, J.: H-spaces from a Homotopy Point of View. SLNM 161. Berlin, Springer (1970)
[35] Tonks, A.: Relating the associahedron and the permutohedron, In “Operads: Proceedings of the Renaissance Conferences (Hartford CT / Luminy Fr 1995)” Contemporary Mathematics, 20, 33-36 (1997) · Zbl 0873.51016
[36] Umble, R.: Structure relations in special \[A_{\infty}\]-bialgebras. J. Math. Sci. 152, 443-450 (2008) · Zbl 1328.16003
[37] Umble, R.: A topologically induced \[2\]-in/\[2\]-out operation on loop cohomology. J. Math. Sci. 197, 862-871 (2014) · Zbl 1336.55015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.