×

Vecteurs de Witt non commutatifs et représentabilité de l’homologie modulo \(p\). (Noncommutative Witt vectors and representability of homology modulo \(p\)). (French) Zbl 0769.55011

This paper deals with a space \(T_ 1(n)\) which has nice representability properties for homology classes. Let \(A\) denote the \(\bmod p\) Steenrod algebra, and let \(G(n)\) denote the free right unstable \(A\)-module on a class of degree \(n\). Then \(T_ 1(n)\) is the unique space, up to homotopy, such that (i) \(H_ *T_ 1(n) \approx \Sigma G(n)\), (ii) \(\Sigma\Omega T_ 1(n) \to T_ 1(n)\) induces a surjection in \(\bmod p\) homology, and (iii) \(H_ *(T_ 1(n)\); \(Z[1/p]) = 0\). Then \([T_ 1(n),\Sigma Y] \to H_ n(Y)\) is surjective for all spaces \(Y\), while \([T_ 1(n),Y] \to \text{Hom}_{{\mathcal H}}(H_ *\Omega T_ 1(n),H_ *(\Omega_ 0Y)\) is surjective for all spaces \(Y\), and is bijective if \(Y\) is an Eilenberg-MacLane space or of \(n \not\equiv\pm1\bmod 2p\). Here \(\mathcal H\) is the category of unstable \(A\)-Hopf algebras.
Alternatively, \([T_ 1(n),Y]\) maps to \(\text{Hom}_{{\mathcal H}^{F_ p}}(W(n),H_ *\Omega_ 0Y)\) surjectively, and bijectively if \(Y\) is an Eilenberg-MacLane space or if \(n \not\equiv \pm 1\bmod 2p\). Here \(W(n)\) is the projective cover in \(\mathcal H\) of the tensor algebra on a generator of degree \(n\), and \({\mathcal H}^{F_ p}\) is the category of graded cocommutative connected Hopf algebras over \(F_ p\). The Witt vectors in the title are related to \(W(n)\).

MSC:

55S37 Classification of mappings in algebraic topology
55P35 Loop spaces
55P42 Stable homotopy theory, spectra

References:

[1] [An] André, M.: Homologie des algèbres commutatives. (Grundlehren Math. Wiss.) Berlin Heidelberg New York: Springer 1974
[2] [Ar] Arkowitz, M.: The generalized Whitehead product. Pac J. Math.12, 7–23 (1962) · Zbl 0118.18404
[3] [Ba] Baues, H.J.: Iterierte Join-Konstruktionen. Math. Z.131, 77–84 (1973) · doi:10.1007/BF01213826
[4] [Be] Berstein, I.: On co-group in the category of graded algebras. Trans. Am. Math. Soc.115, 257–269 (1965) · Zbl 0134.42404 · doi:10.1090/S0002-9947-1965-0206941-6
[5] [BG] Brown, E.H., Gitler, S.: A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra. Topology12, 283–295 (1973) · Zbl 0266.55012 · doi:10.1016/0040-9383(73)90014-1
[6] [BK] Bousfield, A.K., Kan, D.M.: Homotopy limits, completions, and localizations. (Lect. Notes Math., vol. 304) Berlin Heidelberg New York: Springer 1972 · Zbl 0259.55004
[7] [Bo] Bousfield, A.K.: Nice homology coalgebras. Trans. Am. Math. Soc.148, 473–489 (1970) · Zbl 0199.33302 · doi:10.1090/S0002-9947-1970-0258919-6
[8] [BP1] Brown, E.H., Peterson, F.P.: A universal space for normal bundle ofn-manifolds. Comment. Math. Helv.54, 405–430 (1979) · Zbl 0415.55011 · doi:10.1007/BF02566284
[9] [BP2] Brown, E.H., Peterson, F.P.: On the stable decomposition of {\(\Omega\)}2 S r+2. Trans. Am. Math. Soc.243, 287–298 (1978) · Zbl 0404.55003 · doi:10.1090/S0002-9947-1978-0500933-4
[10] [Br] Brown, E.H.: Cohomology theories. Ann. Math., II. Ser.75, 467–484 (1962) · Zbl 0101.40603 · doi:10.2307/1970209
[11] [BS] Bott, R., Samelson, H.: On the Pontryagin product in spaces of paths. Comment. Math. Helv.27, 320–337 (1953) · Zbl 0052.19301 · doi:10.1007/BF02564566
[12] [Ca] Cartan, H.: Séminaire H. Cartan 1954/1955. Algèbres d’Eilenberg-Mac Lane et homotopie, exposés 1–11 et 13–16. Benjamin: New York 1967
[13] [CLM] Cohen, F.R., Lada, T.J., May, J.P.: The homology of iterated loop spaces. (Lect. Notes Math., vol. 533) Berlin Heidelberg New York: Springer 1976 · Zbl 0334.55009
[14] [Co] Cohen, R.: The immersion conjecture on differentiable manifolds Ann. Math.122, 237–328, (1985) · Zbl 0592.57022 · doi:10.2307/1971304
[15] [Da] Davis, D.: A familly of unstable Steenrod-modules which include those of G. Carlsson. J. Pure Appl. Algebra35, 253–267 (1985) · Zbl 0564.55016 · doi:10.1016/0022-4049(85)90044-1
[16] [De] Demazure, M.: Lectures onp-divisible groups. (Lect. Notes Math., vol. 302) Berlin Heidelberg New York: Springer 1972 · Zbl 0247.14010
[17] [DG] Demazure, M., Gabriel, P.: Groupes algébriques, vol. 1. Paris: Masson 1970
[18] [Die] Dieudonné, J.: Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristiquep>0 (V). Bull. Soc. Math. Fr.84, 207–239 (1956) · Zbl 0072.26204
[19] [Dit] Ditters, B.: Sur une série exponentielle non commutative définie sur les corps de caractéristiquep. C.R. Acad. Sci. Paris268, 580–582 (1969) · Zbl 0196.05101
[20] [Ga] Ganea, T.: Co-groups and suspensions. Invent. Math.9, 185–197 (1970) · Zbl 0194.55103 · doi:10.1007/BF01404323
[21] [GL] Goerss, P., Lannes, J.: Realizing unstable injectives. Math. Z.196, 239–248 (1987) · Zbl 0636.55008 · doi:10.1007/BF01163658
[22] [Go1] Goerss, P.: A direct construction for the duals of Brown-Gitler spectra. Indiana Univ. Math. J.34, 733–751 (1985) · Zbl 0584.55008 · doi:10.1512/iumj.1985.34.34039
[23] [Go2] Goerss, P.: Unstable projective and stable Ext with applications. Proc. Lond. Math. Soc. III. Ser.53, 539–561 (1986) · Zbl 0638.55018 · doi:10.1112/plms/s3-53.3.539
[24] [Go3] Goerss, P.: Projective and injective Hopf algebras over the Dyer-Lashof algebra. (Preprint)
[25] [GZ] Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. (Ergeb. Math. Grenzgeb., vol. 35) Berlin Heidelberg New York: Springer 1967 · Zbl 0186.56802
[26] [He] Heller, A.: On the representability of homotopy functors. J. Lond. Math. Soc., II. Ser.23, 551–562 (1981) · Zbl 0477.55013 · doi:10.1112/jlms/s2-23.3.551
[27] [Ja] James, I.M.: Reduced product spaces. Ann. Math.62, 170–197 (1955) · Zbl 0064.41505 · doi:10.2307/2007107
[28] [La1] Lannes, J.: Sur len-dual dun-ème spectre de Brown-Gitler. Math. Z.199, 29–42 (1988) · Zbl 0629.55003 · doi:10.1007/BF01160207
[29] [La2] Lannes, J.: Sur les espaces fonctionnels dont la source est le classifiant d’unp-groupe abélien élémentaire. Publ. Math., Inst. Hautes Étud. Sci. (à paraitre)
[30] [Li] Lin, W.-H.: Order of the identity map of the Brown-Gitler spectrum. In: Carlsson G. et al. (eds.) Algebraic Topology Proceedings, Arcata 1986. (Lect. Notes Math., vol. 1370, pp. 274–279) Berlin Heidelberg New York: Springer 1986
[31] [LZ1] Lannes, J., Zarati, S.: Invariants de Hopf d’ordre supérieurs et suite spectrale d’Adams instable. C.R. Acad. Sci. Paris296, 695–698 (1983) · Zbl 0534.55009
[32] [LZ2] Lannes, J., Zarati, S.: Sur lesU. Ann. Sci. Éc. Norm. Supér.19, 1–31 (1986)
[33] [Mac] Mac Lane, S.: Categories for the working mathematician. (Grad. Texts Math., vol. 5) Berlin Heidelberg New York: Springer 1971 · Zbl 0232.18001
[34] [Mah] Mahowald, M.: A new infinite family in2{\(\pi\)} S . Topology16, 249–254 (1977) · Zbl 0357.55020 · doi:10.1016/0040-9383(77)90005-2
[35] [Mi] Miller, H.R.: The Sullivan conjecture on maps from classifying spaces. Ann. Math.120, 39–87 (1984) et corrigendum, Ann. Math.121, 605–609 (1985) · Zbl 0552.55014 · doi:10.2307/2007071
[36] [MM] Milnor, J., Moore, J.: On the structure of Hopf algebra. Ann. Math., II. Ser.81, 211–264 (1965) · Zbl 0163.28202 · doi:10.2307/1970615
[37] [MS1] Moore, J., Smith, L.: Hopf algebras and multiplicative fibrations I. Am. Math.90, 752–780 (1968) · Zbl 0194.24501 · doi:10.2307/2373482
[38] [MS2] Moore, J., Smith, L.: Hopf algebras and multiplicative fibrations II. Am. J. Math.90, 1113–1150 (1968) · Zbl 0214.50201 · doi:10.2307/2373293
[39] [Qu] Quillen, D.: Homotopical Algebra. (Lect. Notes Math., vol. 43) Berlin Heidelberg New York: Springer 1967
[40] [Sc] Schoeller, C.: Etude de la catégorie des algèbres de Hopf commutatives connexes sur un corps. Manuscr. Math3, 133–155 (1970) · Zbl 0222.18016 · doi:10.1007/BF01273307
[41] [Se] Serre, J.-P.: Corps locaux. Hermann: Paris 1959
[42] [Sm] Smith, L.: Lectures on the Eilenberg-Moore spectral sequence. (Lect. Notes Math., vol. 134) Berlin Heidelberg New York: Springer 1970 · Zbl 0197.19702
[43] [Wi] Witt, E.: Zyklische Körper und Algebren der Charakteristikp vom Gradep n . J. Reine Angew. Math.176, 126–140 (1936) · JFM 62.1112.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.