×

Maximal operators on the infinite-dimensional torus. (English) Zbl 1520.43004

The authors study maximal operators related to bases on the infinite-dimensional torus \(\mathbb T^\omega\). A basis \(\mathfrak B\) is a collection of Borel measurable subsets of the infinite-dimensional torus with finite positive measure and the maximal function \(M^\mathfrak B\) is defined as usual by \[ M^\mathfrak B f(x)=\sup_{x\in Q\in \mathfrak B} \frac{1}{|Q|}\int_Q |f(x)|\,dx, \] where \(dx\) denotes the Haar measure on the group \(\mathbb T^\omega\). There are two concrete bases that have already been considered: the so-called Rubio de Francia basis denoted by \(\mathfrak R\), which plays the role of the cubes in \(\mathbb R^n\), and a subclass denoted by \(\mathfrak R_0\), the so-called restricted Rubio de Francia basis, which plays the role of the dyadic cubes in \(\mathbb R^n\). It is known that \(M^\mathfrak R\) is not of weak type \((1,1)\) (see [D. Kosz, Stud. Math. 258, No. 1, 103–119 (2021; Zbl 1466.43004)]) while \(M^\mathfrak {R_0}\) is of weak type \((1,1)\) (see [E. Fernández and L. Roncal, Potential Anal. 53, No. 4, 1449–1465 (2020; Zbl 1443.43007)]).
The authors find a wide class of bases \(\mathfrak R'\) such that \(\mathfrak R_0\subset \mathfrak R'\subset \mathfrak R\) for which the corresponding maximal functions are not even of restricted weak type \((q,q)\). This is done using what they call, for \(0<\varepsilon\le 1/2\) and \(l\in \mathbb N\), \((\varepsilon,l)\)-configurations which are collections \(\{Q^{(1)},\dots, Q^{(l)}\}\subset \mathfrak R\) such that there exists some measurable \(A\subset \mathbb T^\omega\) such that the \(Q^{(k)}\setminus A\) are pairwise disjoint and satisfy that \(|A|=|Q^{(k)}|\) and \(\varepsilon|A|\le |Q^{(k)}\cap A|\le (1-\varepsilon)|A|\) for each \(k\). It is shown that any basis \(\mathfrak {R'}=\mathfrak R_0\cup (\bigcup_j S_j)\) where \(S_j\) are \((\varepsilon_j,l_j)\)-configurations with the condition \(\sup_{j} \varepsilon_j^{q+1}l_j=\infty\) satisfies that \(M^{\mathfrak R'}\) is not of restricted weak type \((q,q)\). Actually, for each \(1\le q_0<\infty\) they manage to find the precise condition in case of bases generated using \((\varepsilon,l)\)-configurations to characterize when \(M^\mathfrak {R'}\) is not of restricted weak type \((q,q)\).
On the other hand, they consider also the weighted setting and introduce the Muckenhoupt class \(A_p^{\mathfrak R}(\mathbb T^\omega)\) and the reverse Hölder class \(RH_r^{\mathfrak R}(\mathbb T^\omega)\) associated to a basis \(\mathfrak R\). They manage to show that if \(w\in A_p^{\mathfrak R}(\mathbb T^\omega)\) for some \(1<p<\infty\), then for each \(1\le q<\infty\) there exists \(\mathfrak R'\) such that \(M^\mathfrak {R'}\) is not of weighted restricted weak type \((q,q)\). In particular if either \(w\in A_p^{\mathfrak R}(\mathbb T^\omega)\) for some \(1<p<\infty\) or \(w\in RH_r^{\mathfrak R}(\mathbb T^\omega)\) for some \(1<r<\infty\), then \(M^\mathfrak {R}\) is not of weighted restricted weak type \((q,q)\) for all \(1\le q <\infty\).

MSC:

43A70 Analysis on specific locally compact and other abelian groups
42B25 Maximal functions, Littlewood-Paley theory
20E07 Subgroup theorems; subgroup growth
42B05 Fourier series and coefficients in several variables

References:

[1] Aleman, A.; Olsen, J-F; Saksman, E., Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not., 16, 4368-4378 (2014) · Zbl 1303.42009 · doi:10.1093/imrn/rnt080
[2] Aleman, A.; Olsen, J-F; Saksman, E., Fatou and brothers Riesz theorems in the infinite-dimensional polydisc, J. Anal. Math., 137, 1, 429-447 (2019) · Zbl 1431.46021 · doi:10.1007/s11854-019-0006-x
[3] Bayart, F., Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math., 136, 3, 203-236 (2002) · Zbl 1076.46017 · doi:10.1007/s00605-002-0470-7
[4] Bayart, F.; Defant, A.; Frerick, L.; Maestre, M.; Sevilla-Peris, P., Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables, Math. Ann., 368, 1-2, 837-876 (2017) · Zbl 1371.46031 · doi:10.1007/s00208-016-1511-1
[5] Bendikov, A.: Potential Theory on Infinite-Dimensional Abelian Groups, De Gruyter Studies in Mathematics, vol. 21. Walter de Gruyter & Co., Berlin (1995). (Translated from the Russian manuscript by Carol Regher) · Zbl 0869.31001
[6] Bendikov, A.; Coulhon, T.; Saloff-Coste, L., Ultracontractivity and embedding into \(L^\infty \), Math. Ann., 337, 4, 817-853 (2007) · Zbl 1132.47031 · doi:10.1007/s00208-006-0057-z
[7] Bendikov, A.; Saloff-Coste, L., Spaces of smooth functions and distributions on infinite-dimensional compact groups, J. Funct. Anal., 218, 1, 168-218 (2005) · Zbl 1074.22001 · doi:10.1016/j.jfa.2004.06.006
[8] Bennett, C.; Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics (1988), Boston: Academic Press Inc, Boston · Zbl 0647.46057
[9] Berkson, E., Periodization, transference of Muckenhoupt weights, and automatic tight norm estimates for the periodic Hilbert transform, J. Geom. Anal., 31, 9, 8780-8831 (2021) · Zbl 1471.42014 · doi:10.1007/s12220-020-00405-2
[10] Bohr, H., Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen, Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse, 4, 441-488 (1913) · JFM 44.0306.01
[11] Bruckner, AM, Differentiation of integrals, Am. Math. Mon., 78, 9, part II, ii+51 (1971) · Zbl 0225.28002
[12] Buckley, S.M.: Harmonic analysis on weighted spaces. Ph.D. thesis, University of Chicago (1990)
[13] Coifman, RR; Weiss, G., Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. étude de Certaines Intégrales Singulières. Lecture Notes in Mathematics (1971), Berlin: Springer, Berlin · Zbl 0224.43006 · doi:10.1007/BFb0058946
[14] Cruz-Uribe, D.; Neugebauer, CJ, The structure of the reverse Hölder classes, Trans. Am. Math. Soc., 347, 8, 2941-2960 (1995) · Zbl 0851.42016
[15] de Guzmán, M., Differentiation of Integrals in \(R^n\). Lecture Notes in Mathematics (1975), Berlin: Springer, Berlin · Zbl 0327.26010
[16] de Guzmán, M., Welland, G.V.: On the differentiation of integrals. Rev. Un. Mat. Argentina 25, 253-276 (1970/71) · Zbl 0325.28004
[17] Duoandikoetxea, J., Fourier Analysis, Graduate Studies in Mathematics (2001), Providence: American Mathematical Society, Providence · Zbl 0969.42001
[18] Duoandikoetxea, J.: In: Lukeš, J., Pick, L. (eds.) Spring School on Analysis Paseky 2013. Lecture Notes Paseky nad Jizerou. Forty Years of Muckenhoupt Weights, vol. 2013, pp. 23-75. Matfyzpress, Praga (2013)
[19] Duoandikoetxea, J.; Martín-Reyes, FJ; Ombrosi, S., On the \(A_\infty\) conditions for general bases, Math. Z., 282, 3-4, 955-972 (2016) · Zbl 1343.42034 · doi:10.1007/s00209-015-1572-y
[20] Edwards, RE; Hewitt, E., Pointwise limits for sequences of convolution operators, Acta Math., 113, 181-218 (1965) · Zbl 0161.11104 · doi:10.1007/BF02391777
[21] Feller, W., An Introduction to Probability Theory and Its Applications (1968), New York: Wiley, New York · Zbl 0155.23101
[22] Fernández, E.: Análisis de Fourier en El Toro Infinito-Dimensional. Ph.D. thesis, Universidad de La Rioja (2019)
[23] Fernández, E.; Roncal, L., A decomposition of Calderón-Zygmund type and some observations on differentiation of integrals on the infinite-dimensional torus, Potential Anal., 53, 4, 1449-1465 (2020) · Zbl 1443.43007 · doi:10.1007/s11118-019-09813-8
[24] Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics (2014), New York: Springer, New York · Zbl 1304.42001 · doi:10.1007/978-1-4939-1194-3
[25] Hairer, M.: Introduction to Malliavin calculus. http://www.hairer.org/notes/Malliavin.pdf (2021)
[26] Hedenmalm, H.; Lindqvist, P.; Seip, K., A Hilbert space of Dirichlet series and systems of dilated functions in \(L^2(0,1)\), Duke Math. J., 86, 1, 1-37 (1997) · Zbl 0887.46008 · doi:10.1215/S0012-7094-97-08601-4
[27] Hedenmalm, H.; Saksman, E., Carleson’s convergence theorem for Dirichlet series, Pac. J. Math., 208, 1, 85-109 (2003) · Zbl 1057.42005 · doi:10.2140/pjm.2003.208.85
[28] Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. (1970) · Zbl 0213.40103
[29] Hytönen, T.; Pérez, C.; Rela, E., Sharp reverse Hölder property for \({A}_\infty\) weights on spaces of homogeneous type, J. Funct. Anal., 263, 12, 3883-3899 (2012) · Zbl 1266.42045 · doi:10.1016/j.jfa.2012.09.013
[30] Jagadeesan, M., Simple analysis of sparse, sign-consistent JL, Approx. Random. Combin. Optim. Algorithms Tech., 61, 1-61, 20 (2019) · Zbl 07650128
[31] Jessen, B., A remark on strong differentiation in a space of an infinite number of dimensions, Mat. Tidsskr. B., 20, 54-57 (1950) · Zbl 0039.28701
[32] Jessen, B., On strong differentiation, Mat. Tidsskr. B., 2, 90-91 (1952) · Zbl 0048.03903
[33] Kosz, D., On differentiation of integrals in the infinite-dimensional torus, Stud. Math., 258, 1, 103-119 (2021) · Zbl 1466.43004 · doi:10.4064/sm191001-10-2
[34] Latała, R., Estimation of moments of sums of independent real random variables, Ann. Probab., 25, 3, 1502-1513 (1997) · Zbl 0885.60011 · doi:10.1214/aop/1024404522
[35] Lerner, AK; Nazarov, F., Intuitive dyadic calculus: the basics, Expo. Math., 37, 3, 225-265 (2019) · Zbl 1440.42062 · doi:10.1016/j.exmath.2018.01.001
[36] Parissis, I.; Rela, E., Asymptotically sharp reverse Hölder inequalities for flat Muckenhoupt weights, Indiana Univ. Math. J., 67, 6, 2363-2391 (2018) · Zbl 1414.42025 · doi:10.1512/iumj.2018.67.7522
[37] Paternostro, V.; Rela, E., Improved Buckley’s theorem on locally compact abelian groups, Pac. J. Math., 299, 1, 171-189 (2019) · Zbl 1430.42022 · doi:10.2140/pjm.2019.299.171
[38] Perfekt, K-M; Pushnitski, A., On Helson matrices: moment problems, non-negativity, boundedness, and finite rank, Proc. Lond. Math. Soc. (3), 116, 1, 101-134 (2018) · Zbl 06836089 · doi:10.1112/plms.12068
[39] Rubio de Francia, J.L.: Nets of subgroups in locally compact groups. Comment. Math. Prace Mat. 20, 453-466 (1977/78) · Zbl 0415.43001
[40] Rubio de Francia, J.L.: Convergence of Fourier series of infinitely many variables. In: Proceedings of the Seventh Spanish-Portuguese Conference on Mathematics, Part II (Sant Feliu de Guíxois, 1980), no. 21, pp. 237-241 (1980) · Zbl 1535.42012
[41] Saks, S., Theory of the Integral (1937), Warsaw: Monografie Matematyczne, Warsaw · JFM 63.0183.05
[42] Toeplitz, O., Über eine bei den dirichletschen reihen auftretende aufgabe aus der theorie der potenzreihen von unendlichvielen veränderlichen, Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse, 3, 417-432 (1913) · JFM 44.0405.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.