×

Parametrization of knowledge structures. (English) Zbl 0688.68086

Several numerical parameters are introduced (or generalized) in order to measure the intricacy of a knowledge structure. This last notion is also generalized in the paper in the sense that it is induced by a surmise system instead of a quasiordering of knowledge, where a surmise system is a mapping s which to every elementary question x in a body of knowledge X associates a nonempty family s(x) of subsets of X called clauses for x. A typical example of a characterization of a parameter considered in the paper can be (for finite X) Proposition 3.10: The separating number of a space-like surmise system (X,s) is the least number of weak orders \((X,W_ i)\) satisfying, for every x in X, (i) for all indices i, there is a clause \(C\in s(x)\) such that \(C\subseteq W_ i(x)\), (ii) \(\cap s(x)=\cap_{i}W_ i(x).\)
The last section of the paper contains results comparing different parameters.
Reviewer: W.Bartol

MSC:

68T99 Artificial intelligence
06A06 Partial orders, general
Full Text: DOI

References:

[1] Birkhoff, G., Rings of sets, Duke Math. J., 3, 443-454 (1937) · Zbl 0017.19403
[2] Birkhoff, G., Lattice Theory, (American Mathematical Society Colloquium Publication, XXV (1967), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0126.03801
[3] Bonnet, R.; Pouzet, M., Extension et stratification d’ensembles dispersés, C.R. Acad. Sci. Paris Sér A, 268, 1512-1515 (1969) · Zbl 0188.04203
[4] Degreef, E.; Doignon, J.-P.; Ducamp, A.; Falmagne, J.-C., Languages for the assessment of knowledge, J. Math. Psych., 30, 3, 243-256 (1986) · Zbl 0609.92037
[5] Dilworth, R. P., A decomposition theorem for partially ordered sets, Ann. of Math., 51, 161-166 (1950) · Zbl 0038.02003
[6] Doignon, J.-P.; Falmagne, J.-C., Spaces for the assessment of knowledge, Internat. J. Man-Mach. Stud., 23, 175-196 (1985) · Zbl 0581.68066
[7] Doignon, J.-P.; Ducamp, A.; Falmagne, J.-C., On realizable biorders and the biorder dimension of a relation, J. Math. Psych., 28, 73-109 (1984) · Zbl 0562.92018
[8] Ducamp, A.; Falmagne, J.-C., Composite measurement, J. Math. Psych., 6, 359-390 (1969) · Zbl 0184.45501
[9] J.-C. Falmagne and J.-P. Doignon, A class of stochastic procedures for the assessment of knowledge, British J. Math. Statist. Psych. (to appear).; J.-C. Falmagne and J.-P. Doignon, A class of stochastic procedures for the assessment of knowledge, British J. Math. Statist. Psych. (to appear). · Zbl 0719.92026
[10] J.-C. Falmagne and J.-P. Doignon, A markovian procedure for assessing the state of a system, J. Math. Psych. (to appear).; J.-C. Falmagne and J.-P. Doignon, A markovian procedure for assessing the state of a system, J. Math. Psych. (to appear). · Zbl 0654.92020
[11] Kay, D. C.; Womble, E. W., Axiomatic convexity theory and relationships between the Caratheodory, Helly and Randon numbers, Pacific J. Math., 38, 471-485 (1971) · Zbl 0235.52001
[12] Komm, H., On the dimension of partially ordered sets, Amer. J. Math., 70, 507-520 (1948) · Zbl 0037.31903
[13] Monjardet, B., Problémes de transversalité dans les hypergraphes, les ensembles ordonnés et en théorie de la décision collective, (Thèse, VI (1974), Université de Paris)
[14] Monjardet, B., Sur la dimension des treillis distributifs, Analyse Appliquée et Informatique, Comptes Rendus des Journées de Combinatoire et Informatique de Bordeaux (1975) · Zbl 0347.06011
[15] Monjardet, B., Tresses, fuseaux, préordres et topologies, Math. Sci. Humaines, 30, 11-22 (1979)
[16] Nilsson, N. J., Problem-Solving Methods in Artificial Intelligence (1971), McGraw-Hill: McGraw-Hill New York
[17] Pouzet, M., Généralisation d’une construction de Ben Dushnik-E.W. Miller, C.R. Acad. Sci. Paris Sér. A, 269, 877-879 (1969) · Zbl 0206.29601
[18] Roberts, F. S., Measurement theory with applications to decision making, utility and the social sciences. Encyclopedia of Mathematics and Its Applications, (Rota, Gian-Carlo, Mathematics and the Social Sciences, 7 (1979), Addison-Wesley: Addison-Wesley Reading, MA) · Zbl 0432.92001
[19] Sierksma, G., Generalizations of Helly’s theorem: Open problems, (Proceedings Conference on Convexity and Related Combinatorial Geometry. Proceedings Conference on Convexity and Related Combinatorial Geometry, Lecture Notes in Pure and Applied Mathematics, 76 (1982), Dekker: Dekker New York) · Zbl 0487.52007
[20] Spencer, J., Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hungar., 22, 349-353 (1971) · Zbl 0242.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.