×

On lattice path matroid polytopes: integer points and Ehrhart polynomial. (English) Zbl 1494.52014

Summary: In this paper we investigate the number of integer points lying in dilations of lattice path matroid polytopes. We give a characterization of such points as polygonal paths in the diagram of the lattice path matroid. Furthermore, we prove that lattice path matroid polytopes are affinely equivalent to a family of distributive polytopes. As applications we obtain two new infinite families of matroids verifying a conjecture of J. A. De Loera et. al. [Discrete Comput. Geom. 42, No. 4, 670–704 (2009; Zbl 1207.52015)] and present an explicit formula of the Ehrhart polynomial for one of them.

MSC:

52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
05B35 Combinatorial aspects of matroids and geometric lattices

Citations:

Zbl 1207.52015

References:

[1] An, S., Jung, J., Kim, S.: Facial structures of lattice path matroid polytopes. arXiv:1701.00362 (2017)
[2] Bidkhori, H.: Lattice path matroid polytopes. arXiv:1212.5705 (2012)
[3] Birkhoff, G, Rings of sets, Duke Math. J., 3, 443-454, (1937) · Zbl 0017.19403 · doi:10.1215/S0012-7094-37-00334-X
[4] Bonin, JE, Lattice path matroids: the excluded minors, J. Combin. Theory Ser. B, 100, 585-599, (2010) · Zbl 1231.05054 · doi:10.1016/j.jctb.2010.05.001
[5] Bonin, J; Mier, A; Noy, M, Lattice path matroids: enumerative aspects and Tutte polynomials, J. Combin. Theory Ser. A, 104, 63-94, (2003) · Zbl 1031.05031 · doi:10.1016/S0097-3165(03)00122-5
[6] Bonin, JE; Giménez, O, Multi-path matroids, Combin. Probab. Comput., 16, 193-217, (2007) · Zbl 1121.05023 · doi:10.1017/S0963548306007942
[7] Brändén, P; Bona, M (ed.), Unimodality, log-concavity, real-rootedness and beyond, 437-483, (2015), Boca Raton · Zbl 1327.05051 · doi:10.1201/b18255-10
[8] Chatelain, V; Ramírez Alfonsín, JL, Matroid base polytope decomposition, Adv. Appl. Math., 47, 158-172, (2011) · Zbl 1231.05056 · doi:10.1016/j.aam.2010.04.005
[9] Cohen, E., Tetali, P., Yeliussizov, D.: Lattice path matroids: negative correlation and fast mixing. arXiv:1505.06710 (2015)
[10] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002) · Zbl 1002.06001 · doi:10.1017/CBO9780511809088
[11] Loera, JA; Haws, DC; Köppe, M, Ehrhart polynomials of matroid polytopes and polymatroids, Discrete Comput. Geom., 42, 670-702, (2009) · Zbl 1207.52015 · doi:10.1007/s00454-008-9080-z
[12] Delucchi, E; Dlugosch, M, Bergman complexes of lattice path matroids, SIAM J. Discrete Math., 29, 1916-1930, (2015) · Zbl 1323.05028 · doi:10.1137/130944242
[13] Dilworth, RP, A decomposition theorem for partially ordered sets, Ann. Math. (2), 51, 161-166, (1950) · Zbl 0038.02003 · doi:10.2307/1969503
[14] Ehrhart, E, Sur LES polyèdres rationnels homothétiques à \(n\) dimensions, C. R. Acad. Sci., 254, 616-618, (1962) · Zbl 0100.27601
[15] Feichtner, EM; Sturmfels, B, Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.), 62, 437-468, (2005) · Zbl 1092.52006
[16] Felsner, S; Knauer, K, Distributive lattices, polyhedra, and generalized flows, Eur. J. Combin., 32, 45-59, (2011) · Zbl 1205.06007 · doi:10.1016/j.ejc.2010.07.011
[17] Katzman, M, The Hilbert series of Veronese type, Commun. Algebra, 33, 1141-1146, (2005) · Zbl 1107.13003 · doi:10.1081/AGB-200053828
[18] Knauer, K; Martínez-Sandoval, L; Alfonsín, JL, A Tutte polynomial inequality for lattice path matroids, Adv. Appl. Math., 94, 23-38, (2018) · Zbl 1377.05089 · doi:10.1016/j.aam.2016.11.008
[19] Morton, J; Turner, J, Computing the Tutte polynomial of lattice path matroids using determinantal circuits, Theor. Comput. Sci., 598, 150-156, (2015) · Zbl 1329.68120 · doi:10.1016/j.tcs.2015.07.042
[20] Neggers, J, Representations of finite partially ordered sets, J. Combin. Inf. Syst. Sci., 3, 113-133, (1978) · Zbl 0409.06001
[21] Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. Oxford University Press, Oxford (2011) · Zbl 1254.05002
[22] Reiner, V; Welker, V, On the charney-Davis and neggers-Stanley conjectures, J. Combin. Theory Ser. A, 109, 247-280, (2005) · Zbl 1065.06002 · doi:10.1016/j.jcta.2004.09.003
[23] Schweig, J, On the \(h\)-vector of a lattice path matroid, Electron. J. Combin., 17, note 3, (2010) · Zbl 1267.05057
[24] Schweig, J, Toric ideals of lattice path matroids and polymatroids, J. Pure Appl. Algebra, 215, 2660-2665, (2011) · Zbl 1230.13028 · doi:10.1016/j.jpaa.2011.03.010
[25] Simion, R, A multi-indexed Sturm sequence of polynomials and unimodality of certain combinatorial sequences, J. Combin. Theory Ser. A, 36, 15-22, (1984) · Zbl 0525.05004 · doi:10.1016/0097-3165(84)90075-X
[26] Stanley, R.P.: A chromatic-like polynomial for ordered sets. In: Proceedings of the 2nd Chapel Hill Conference on Combinatorial Mathematics and its Applications, pp. 421-427. University of North Carolina, Chapel Hill (1970) · Zbl 0215.05401
[27] Stanley, RP, Two poset polytopes, Discrete Comput. Geom., 1, 9-23, (1986) · Zbl 0595.52008 · doi:10.1007/BF02187680
[28] Stembridge, JR, Enriched \(P\)-partitions, Trans. Am. Math. Soc., 349, 763-788, (1997) · Zbl 0863.06005 · doi:10.1090/S0002-9947-97-01804-7
[29] Stembridge, JR, Counterexamples to the poset conjectures of neggers, Stanley, and stembridge, Trans. Am. Math. Soc., 359, 1115-1128, (2007) · Zbl 1110.06009 · doi:10.1090/S0002-9947-06-04271-1
[30] Wagner, DG, Total positivity of Hadamard products, J. Math. Anal. Appl., 163, 459-483, (1992) · Zbl 0783.15010 · doi:10.1016/0022-247X(92)90261-B
[31] Welsh, D.J.A.: Matroid Theory. L. M. S. Monographs, vol. 8. Academic Press, London (1976) · Zbl 0343.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.