×

Consistent dually semimodular lattices. (English) Zbl 0758.06005

Summary: We study combinatorial and order-theoretical properties of consistent dually semimodular lattices of finite rank. Natural examples of such lattices are lattices of subnormal subgroups of groups with composition series. We prove that a dually semimodular lattice is consistent if and only if it is “locally” atomic and modular. From this, we conclude that dually semimodular subgroup lattices are necessarily consistent. We discuss exchange properties for irredundant decompositions of elements into join-irreducibles. Finally, we show that a finite consistent dually semimodular lattice is modular if and only if it has the same number of join-irreducibles and meet-irreducibles.

MSC:

06C10 Semimodular lattices, geometric lattices
06C05 Modular lattices, Desarguesian lattices
Full Text: DOI

References:

[1] Baer, R., The significance of the system of subgroups for the structure of the group, Amer. J. Math., 61, 1-44 (1939) · JFM 65.0060.01
[2] Birkhoff, G., Rings of sets, Duke Math. J., 3, 442-454 (1937) · Zbl 0017.19403
[3] Birkhoff, G., Lattice Theory, (Amer. Math. Soc. Colloq. Publ., Vol. 25 (1967), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0126.03801
[4] Burnside, W., Some properties of groups whose orders are powers of primes, (Proc. London Math. Soc., 13 (1913)), 6-12, (2) · JFM 44.0164.02
[5] Crawley, P., Decomposition theory for nonsemimodular lattices, Trans. Amer. Math. Soc., 99, 246-254 (1961) · Zbl 0098.02601
[6] Crawley, P.; Dilworth, R. P., Algebraic Theory of Lattices (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0494.06001
[7] Dedekind, R., Über die von drei Moduln erzeugte Dualgruppe, Math. Ann., 53, 371-403 (1900) · JFM 31.0211.01
[8] Gesammelte Werke, Vol. 2, pp. 236-271.; Gesammelte Werke, Vol. 2, pp. 236-271.
[9] Dilworth, R. P., The arithmetic theory of Birkhoff lattices, Duke Math. J., 8, 286-299 (1941) · Zbl 0025.10203
[10] Dilworth, R. P., Note on the Kurosch-Ore theorem, Bull. Amer. Math. Soc., 52, 659-663 (1946) · Zbl 0060.06107
[11] Dilworth, R. P., Proof of a conjecture on finite modular lattices, Ann. of Math., 60, 359-364 (1954) · Zbl 0056.26203
[12] Dilworth, R. P.; Crawley, P., Decomposition theory for lattices without chain conditions, Trans. Amer. Math. Soc., 96, 1-22 (1960) · Zbl 0091.03004
[13] Dowling, T. A.; Wilson, R. M., Whitney number inequalities for geometric lattices, (Proc. Amer. Math. Soc., 47 (1975)), 504-512 · Zbl 0297.05010
[14] Faigle, U., Geometries on partially ordered sets, J. Combin. Theory Ser. B, 28, 26-51 (1980) · Zbl 0359.05018
[15] Frattini, G., Intorno alla generazione dei gruppi di operazioni, Rend. Atti Accad. Lincei, 1, 4, 455-457 (1985) · JFM 17.0097.01
[16] Greene, C., A rank inequality for finite geometric lattices, J. Combin. Theory, 9, 357-364 (1970) · Zbl 0254.05016
[17] Itô, N., Note on (LM)-groups of finite order, Kôdai Math. Sem. Rep., 1-6 (1951) · Zbl 0044.01303
[18] Iwasawa, K., Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Toyko, Sect. I, 4, 171-199 (1941) · Zbl 0061.02503
[19] Jones, A. W., Semi-modular finite groups and the Burnside basis theorem (abstract), Bull. Amer. Math. Soc., 52, 418 (1946)
[20] Kung, J. P.S, Matchings and Radon transforms in lattices. I. Consistent lattices, Order, 2, 105-112 (1985) · Zbl 0582.06008
[21] Kung, J. P.S, Matchings and Radon transforms in lattices. II. Concordant sets, (Math. Proc. Cambridge Philos. Soc., 101 (1987)), 221-231 · Zbl 0626.06008
[22] J. P. S. Kung; J. P. S. Kung
[23] Kurosch, A., Durchschnittsdarstellungen mit irrededuziblen Komponenten in Ringen und sogennanten Dualgruppen, Mat. Sb., 42, 613-616 (1935) · JFM 61.1029.03
[24] Lennox, J. C.; Stonehewer, S. E., Subnormal Subgroups of Groups (1987), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0606.20001
[25] Ore, O., On the foundations of abstract algebra, II, Ann. of Math., 37, 265-292 (1936) · JFM 62.1099.08
[26] Race, D. M., Consistency in Lattices, (Ph.D. thesis (May 1986), North Texas State University: North Texas State University Denton, TX)
[27] Reuter, K., The Kurosh-Ore exchange property, Acta Math. Acad. Sci. Hungar., 53, 119-127 (1989) · Zbl 0675.06003
[28] Rival, I., Combinatorial inequalities for semimodular lattices of breadth two, Algebra Universalis, 6, 303-311 (1976) · Zbl 0423.06008
[29] Rose, J. S., A Course in Group Theory (1978), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0371.20001
[30] Rota, G.-C, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrsh. Verw. Gebiete, 2, 340-368 (1964) · Zbl 0121.02406
[31] Suzuki, M., On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc., 70, 345-371 (1951) · Zbl 0043.02502
[32] Suzuki, M., Structure of a Group and the Structure of Its Lattice of Subgroups (1956), Springer-Verlag: Springer-Verlag Berlin · Zbl 0070.25406
[33] (White, N. L., Theory of Matroids (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK) · Zbl 0579.00001
[34] Wielandt, H., Eine Verallgemeinerung der invarianten Untergruppen, Math. Z., 45, 209-244 (1939) · JFM 65.0061.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.