×

Effect of dynamical noncommutativity on the limiting mass of white dwarfs. (English) Zbl 1427.85003

Summary: The discovery of the existence of an upper bound on the mass of a white dwarf star is considered as one of the finest of twentieth century astrophysics. On approaching this limiting mass of \(1.4 M_\odot,\) known as the Chandrasekhar mass-limit, a white dwarf is believed to spark off with an explosion called type Ia supernova, which is considered to be a standard candle. But since the last decade, observations of several over-luminous, peculiar type Ia supernovae indicate that the Chandrasekhar-limit be significantly larger. By postulating noncommutativity between the components of momentum variables, we show that the mass of white dwarfs can be enhanced significantly and arrive at a new super-Chandrasekhar mass limit of about \(4.68 M_\odot\). This can provide a plausible explanation for the origin of over-luminous peculiar type Ia supernovae.

MSC:

85A15 Galactic and stellar structure
83C65 Methods of noncommutative geometry in general relativity

References:

[1] Chandrasekhar, S., Mon. Not. R. Astron. Soc., 95, 207 (1935) · Zbl 0011.08503
[2] Perlmutter, S., Astrophys. J., 517, 565 (1999)
[3] Riess, A. G., Astron. J., 116, 1009 (1998)
[4] Howell, D. A., Nature, 443, 308 (2006)
[5] Scalzo, R. A., Astrophys. J., 713, 1073 (2010)
[6] Das, U.; Mukhopadhyay, B., Phys. Rev. Lett., 110, Article 071102 pp. (2013)
[7] Subramanian, S.; Mukhopadhyay, B., Mon. Not. R. Astron. Soc., 454, 752 (2015)
[8] Mukhopadhyay, B.; Das, U.; Rao, A. R.; Subramanian, S.; Bhattacharya, M.; Mukerjee, S.; Bhatia, T. S.; Sutradhar, J., (Proceedings of the “20th European Workshop on White Dwarfs 2016 (EuroWD16)” (2017))
[9] Bera, P.; Bhattacharya, D., Mon. Not. R. Astron. Soc., 465, 4026 (2017)
[10] Doplicher, S.; Fredenhagen, K.; Roberts, J. E., Phys. Lett. B, 331, 39 (1994)
[11] Born, M., Proc. R. Soc. Lond. A, 165, 291-303 (1938) · Zbl 0018.42906
[12] Snyder, H. S., Phys. Rev., 71, 38 (1947) · Zbl 0035.13101
[13] Seiberg, N.; Witten, E., J. High Energy Phys., 09, Article 032 pp. (1999)
[14] Bojowald, M.; Brahma, S.; Buyukcam, U.; Ronco, M., Phys. Rev. D, 98, Article 026031 pp. (2018)
[15] Majid, S., Class. Quantum Gravity, 12, 1587 (1988) · Zbl 0672.16009
[16] Majid, S., J. Math. Phys., 41, 06, 3892 (2000) · Zbl 0974.58005
[17] Landau, L. D.; Lifshitz, E. M., Statistical Physics (1980), Butterworth-Heinemann
[18] Smailagic, A.; Spallucci, E., J. Phys. A, 37, 7169 (2004) · Zbl 1062.81138
[19] Feynman, R. P., Feynman Lectures on Gravitation (1995), Addison-Wesley
[20] Schutz, B., Gravity from the Ground Up (2003), Cambridge U.P.: Cambridge U.P. Cambridge
[21] Dadhich, N., Understanding general relativity after 100 years: a matter of perspective, (Bagla, J.; Engineer, S., Gravity and the Quantum. Gravity and the Quantum, Fundamental Theories of Physics, vol. 187 (2017), Springer: Springer Cham); Dadhich, N., Curr. Sci., 109, 260 (2015)
[22] Moser, J., Commun. Pure Appl. Math., 23, 609-636 (1970); Bonnard, B.; Caillau, J. B., Geodesic flow of the averaged controlled Kepler equation (2008) · Zbl 0193.53803
[23] Townsend, P. K., Phys. Rev. D, 15, 10, 2795 (1977)
[24] Dadhich, N.; Ghosh, S. G.; Jhingan, S., Phys. Rev. D, 88, Article 124040 pp. (2013)
[25] Carmeli, M., Classical Fields: General Relativity and Gauge Theory (1982), Wiley Interscience · Zbl 0585.53059
[26] Hehl, F. W.; McCrea, J. D.; Mielke, E. W.; Ne’eman, Y., Phys. Rep., 258, 1-171 (1995)
[27] Ramirez, W. G.; Deriglazov, A. A., Phys. Rev. D, 96, Article 124013 pp. (2017)
[28] Poplawski, N.
[29] Xiao, D.; Shi, J.; Niu, Q., Phys. Rev. Lett., 95, Article 137204 pp. (2005)
[30] Ishizuka, H.; Nagaosa, N., Phys. Rev. B, 96, Article 165202 pp. (2017)
[31] Son, D. T.; Yamamoto, N., Phys. Rev. Lett., 109, Article 181602 pp. (2012)
[32] Andrzejewski, K.; Maslanka, P., Phys. Rev. D, 70, Article 107701 pp. (2004)
[33] Gnatenko, Kh P.; Tkachuk, V. M., Phys. Lett. A, 381, 2463 (2017) · Zbl 1375.81119
[34] Moyal, J. E., Proc. Camb. Philol. Soc., 45, 99 (1949); Groenewold, H., Physica, 12, 405 (1946)
[35] Pathria, R. K., Statistical Mechanics (1996), Butterworth-Heinemann: Butterworth-Heinemann Oxford · Zbl 0862.00007
[36] Lai, D.; Shapiro, S. L., Astrophys. J., 383, 745 (1991)
[37] Ray, A.; Maity, P.; Majumdar, P., Eur. Phys. J. C, 79, 97 (2019)
[38] Kaplan, S. A., Nauk. Zap. (Sci. Notes Univ. Lwow), 15, 109 (1949); Chandrasekhar, S.; Tooper, R. F., Astrophys. J., 139, 1396 (1964)
[39] Banerjee, R., Mod. Phys. Lett. A, 17, 631 (2002) · Zbl 1083.81542
[40] Girvin, S.
[41] Falomir, H.; Gamboa, J.; Gondolo, P.; Mendez, F., Phys. Lett. B, 785, 399 (2018) · Zbl 1398.83139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.