×

Fermionic King model: critical masses resulting from the competition of quantum and evaporation effects. (English) Zbl 1539.82301

Summary: We study the influence of evaporation (the escape of constituents) on the thermodynamics of a self-gravitating non-relativistic gas of fermions in the framework of Newtonian gravitation. For this purpose, it is reconsidered as the so-called fermionic King model introduced by R. Ruffini and L. Stella [“On semi-degenerate equilibrium configurations of a collisionless self-gravitating Fermi gas”, Astron. Astrophys. 119, 35–41 (1983), https://adsabs.harvard.edu/pdf/1983A\%26A...119...35R] in the context of dark matter halos problems. As the usual King model, the present model predicts density profiles that drop to zero at a certain finite radius \(R\), which is referred to as the tidal radius. Our interest is focused on the thermodynamics of this model at constant total mass \(M\) and constant tidal radius \(R\). A special interest is devoted to study the incidence of mass on the collective phenomena of gravitational collapse and evaporation disruption. The underlying physics is driven by the Fermi mass \(M_F \sim \hslash^6/G^3m^8R^3\), which corresponds to the total mass of a self-gravitating degenerate Fermi gas of non-relativistic point particles with mass \(m\), whose linear size is equal to the tidal radius \(R\) of evaporation. Numerical calculations predict three critical values for the total mass, \(M_1 > M_2 > M_3\), which hallmark the thermodynamic stability. The lower bound \(M_3 \simeq \frac{1}{4} M_F\) is a critical value of the total mass below the which the system gravitation is unable to confine its constituents, so that the system with total mass \(M < M_3\) undergoes an evaporation disruption. The other bounds, \(M_2 \simeq 90.9M_F\) and \(M_1 \simeq 8.9 \times 10^6M_F\), are critical values that hallmark the continuous (or discontinuous) character of the microcanonical phase transition associated with gravothermal collapse and the presence of states with negative heat capacities.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Reichl, L. E., A Modern Course in Statistical Mechanics (1980), Austin, TX: University of Texas Press, Austin, TX · Zbl 0913.00015
[2] Gallavotti, G., Statistical Mechanics: A Short Treatize (1999), Berlin: Springer, Berlin · Zbl 0932.82002
[3] Binney, J.; Tremaire, S., Galactic Dynamics (1984), Princeton, NJ: Princeton University Press, Princeton, NJ
[4] Padmanabhan, T., Phys. Rep., 188, 285 (1990) · Zbl 1211.82001 · doi:10.1016/0370-1573(90)90051-3
[5] Bertin, G., Dynamics of Galaxies (2014), Cambridge: Cambridge University Press, Cambridge
[6] Katz, J., Found. Phys., 33, 223 (2003) · doi:10.1023/a:1023776921610
[7] Chavanis, P. H., Int. J. Mod. Phys. B, 20, 3113 (2006) · Zbl 1121.82304 · doi:10.1142/s0217979206035400
[8] Antonov, V. A.; Antonov, V. A., Vest. Leningrad Univ.. IAU Symp., 113, 525 (1985) · doi:10.1017/s007418090014776x
[9] Lynden-Bell, D., Mon. Not. R. Astron. Soc., 136, 101 (1967) · doi:10.1093/mnras/136.1.101
[10] Votyakov, E. V.; Hidmi, H. I.; DeMartino, A.; Gross, D. H E., Phys. Rev. Lett., 89 (2002) · doi:10.1103/physrevlett.89.031101
[11] de Vega, H. J.; Sánchez, N., Phys. Lett. B, 490, 180 (2000) · Zbl 1031.82505 · doi:10.1016/s0370-2693(00)00973-4
[12] de Vega, H. J.; Sánchez, N.; de Vega, H. J.; Sánchez, N., Nucl. Phys. B. Nucl. Phys. B, 625, 460 (2002) · doi:10.1016/s0550-3213(02)00026-3
[13] Chavanis, P. H., Phys. Rev. E, 65 (2002) · doi:10.1103/physreve.65.056123
[14] Velazquez, L.; Guzman, F., Phys. Rev. E, 68 (2003) · doi:10.1103/physreve.68.066116
[15] Velazquez, L.; Garcia, S. G.; Guzman, F., Phys. Rev. E, 79 (2009) · doi:10.1103/physreve.79.011120
[16] Dauxois, T.; Ruffo, S.; Arimondo, E.; Wilkens, M., Dynamics and Thermodynamics of Systems with Long Range Interactions (2002), Berlin: Springer, Berlin
[17] Dauxois, T.; Ruffo, S., Topical Issue: Long-Range Interacting Systems (2011), IOP Publishing
[18] Gross, D. H E., Microcanonical Thermodynamics: Phase Transitions in Small Systems (2000), Singapore: World Scientific, Singapore · Zbl 0998.82511
[19] Campa, A.; Dauxois, T.; Ruffo, S., Phys. Rep., 480, 57 (2009) · doi:10.1016/j.physrep.2009.07.001
[20] Campa, A., Physics of Long-Range Interacting System (2014), Oxford: Oxford University Press, Oxford · Zbl 1303.82003
[21] Velazquez, L., J. Stat. Mech. (2016) · Zbl 1456.80014 · doi:10.1088/1742-5468/2016/03/033105
[22] Chavanis, P. H., Astron. Astrophys., 432, 117 (2005) · Zbl 1071.85001 · doi:10.1051/0004-6361:20041114
[23] Goldenfeld, N., Lectures on Phase Transitions and Renormalization Groups (1992), Reading, MA: Addison-Wesley, Reading, MA
[24] Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena (1971), Oxford: Clarendon, Oxford
[25] Chandrasekhar, S., On stars, their evolution and their stability (1983)
[26] Chandrasekhar, S.; Milne, E. A.; Chandrasekhar, S., Mon. Not. R. Astron. Soc.. Mon. Not. R. Astron. Soc., 95, 207 (1935) · Zbl 0011.08503 · doi:10.1093/mnras/95.3.207
[27] Oppenheimer, J. R.; Volkoff, G. M., Phys. Rev., 55, 374 (1939) · Zbl 0020.28501 · doi:10.1103/physrev.55.374
[28] Tolman, R. C., Phys. Rev., 55, 364 (1939) · Zbl 0020.28407 · doi:10.1103/physrev.55.364
[29] King, I. R.; King, I. R.; King, I. R.; King, I. R., Astron. J.. Astron. J.. Astron. J.. Astron. J., 71, 276 (1966) · doi:10.1086/109918
[30] Ruffini, R.; Stella, L., Astron. Astrophys., 119, 35 (1983)
[31] Chavanis, P-H, Mon. Not. R. Astron. Soc., 300, 981 (1998) · doi:10.1046/j.1365-8711.1998.01867.x
[32] Chavanis, P. H.; Lemou, M.; Mehats, F., The fermionic King model (2014)
[33] Chavanis, P. H.; Lemou, M.; Mehats, F., Phys. Rev. D, 91 (2015) · doi:10.1103/physrevd.91.063531
[34] Chavanis, P-H; Lemou, M.; Méhats, F., Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.123527
[35] Katz, J., Mon. Not. R. Astron. Soc., 190, 497 (1980) · doi:10.1093/mnras/190.3.497
[36] Gomez-Leyton, Y. J.; Velazquez, L., Mon. Not. R. Astron. Soc., 488, 362 (2019) · doi:10.1093/mnras/stz1729
[37] Palau, C. G.; Miralda-Escudé, J., Mon. Not. R. Astron. Soc., 504, 2727 (2021) · doi:10.1093/mnras/stab1024
[38] Hertel, P.; Thirring, W., Commun. Math. Phys., 24, 22 (1971) · Zbl 0227.47034 · doi:10.1007/bf01907031
[39] Alberti, G.; Chavanis, P-H, Eur. Phys. J. B, 93, 208 (2020) · doi:10.1140/epjb/e2020-100557-6
[40] Tello-Ortiz, F.; Velazquez, L., J. Stat. Mech. (2016) · Zbl 1456.82880 · doi:10.1088/1742-5468/2016/10/103203
[41] Destri, C.; de Vega, H. J.; Sanchez, N. G., Astropart. Phys., 46, 14 (2013) · doi:10.1016/j.astropartphys.2013.04.004
[42] Destri, C.; de Vega, H. J.; Sanchez, N. G., New Astron., 22, 39 (2013) · doi:10.1016/j.newast.2012.12.003
[43] de Vega, H. J.; Salucci, P.; Sanchez, N. G., Mon. Not. R. Astron. Soc., 442, 2717 (2014) · doi:10.1093/mnras/stu972
[44] Velazquez, L., Universe, 7, 308 (2021) · doi:10.3390/universe7080308
[45] Arguelles, C. R., Mon. Not. R. Astron. Soc., 502, 4227 (2021) · doi:10.1093/mnras/staa3986
[46] Velazquez, L.; Curilef, S., J. Stat. Mech. (2011) · doi:10.1088/1742-5468/2011/06/p06021
[47] Gomez-Leyton, Y. J.; Velazquez, L., J. Stat. Mech. (2014) · doi:10.1088/1742-5468/2014/04/p04006
[48] Chavanis, P-H, Physica A, 359, 177 (2006) · doi:10.1016/j.physa.2005.06.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.