×

A new \(A_n\) extension of Ramanujan’s \(_1\psi_1\) summation with applications to multilateral \(A_n\) series. (English) Zbl 1059.33025

This paper proves several new identities for multilateral basic hypergeometric series associated with the root system \(A_n\) (or, equivalently, associated with the group \(U(n+1)\)).
Applying an argument of analytic continuation to an \(A_n\) \(q\)-binomial theorem of Milne, the authors derive an \(A_n\) extension of Ramanujan’s \(_1\psi_1\) summation theorem. Together with a \(_1\psi_1\) summation of Gustafson, this \(A_n\) \(_1\psi_1\) summation is used to prove two lemmas which provide an efficient method for deriving multilateral series identities in \(A_n\) from identities of the classical one-dimensional theory. The lemmas are shown to be related to Macdonald identities for \(A_n\). As examples of application of their method, the authors obtain several \(A_n\) extensions of Bailey’s \(_2\psi_2\) transformation formulas as well as many \(A_n\) extensions of a specific \(_2\psi_2\) summation.

MSC:

33D67 Basic hypergeometric functions associated with root systems
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)

References:

[1] G.E. Andrews, \(q\)-Series : Their development and application in analysis, number theory, combinatorics, physics and computer algebra , Amer. Math. Soc., Providence, RI, 1986. · Zbl 0594.33001
[2] W.N. Bailey, Series of hypergeometric type which are infinite in both directions , Quart. J. Math. Oxford 7 (1936), 105-115. · Zbl 0014.16003
[3] ——–, On the basic bilateral basic hypergeometric series \(_2\psi_2\) , Quart. J. Math. Oxford 1 (1950), 194-198. · Zbl 0038.05001 · doi:10.1093/qmath/1.1.194
[4] G. Bhatnagar, \(D_n\) basic hypergeometric series , The Ramanjuan J. 3 (1999), 175-203. · Zbl 0930.33012 · doi:10.1023/A:1006997424561
[5] G. Bhatnagar and S.C. Milne, Generalized bibasic hypergeometric series and their \(U(n)\) extensions , Adv. Math. 131 (1997), 188-252. · Zbl 0885.33011 · doi:10.1006/aima.1997.1659
[6] A.-L. Cauchy, Mémoire sur les fonctions dont plusieurs valeurs... , C.R. Acad. Sci. Paris 17 (184), 523; reprinted in Oeuvres de Cauchy , Ser. 8 , Gauthier-Villars, Paris (1893), 42-50.
[7] R.Y. Denis and R.A. Gustafson, An \(SU(n)\) \(q\)-beta integral transformation and multiple hypergeometric series identities , SIAM J. Math. Anal. 23 (1992), 552-561. · Zbl 0777.33009 · doi:10.1137/0523027
[8] G. Gasper and M. Rahman, Basic hypergeometric series , Cambridge University Press, Cambridge, 1990. · Zbl 0695.33001
[9] R.A. Gustafson, Multilateral summation theorems for ordinary and basic hypergeometric series in \(U(n)\) , SIAM J. Math. Anal. 18 (1987), 1576-1596. · Zbl 0624.33012 · doi:10.1137/0518114
[10] ——–, The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras , in Ramanujan International Symposium on Analysis, N.K. Thakare, ed., 1989.
[11] G.H. Hardy, Ramanujan , Cambridge University Press, Cambridge, 1940; Chelsea, New York, 1978.
[12] W.J. Holman III, Summation theorems for hypergeometric series in \(U(n)\) , SIAM J. Math. Anal. 2 (1980), 523-532. · Zbl 0454.33010 · doi:10.1137/0511050
[13] W.J. Holman III, L.C. Biedenharn and J.D. Louck, On hypergeometric series well-poised in \(SU(n)\) , SIAM J. Math. Anal. 7 (1976), 529-541. · Zbl 0329.33013 · doi:10.1137/0507043
[14] J. Horn, Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen , Math. Ann. 34 (1889), 544-600. · JFM 21.0449.02 · doi:10.1007/BF01443681
[15] M.E.H. Ismail, A simple proof of Ramanujan’s \(_1\psi_1\) sum , Proc. Amer. Math. Soc. 63 (1977), 185-186. · Zbl 0351.33002 · doi:10.2307/2041093
[16] J. Kaneko, A \(_1\Psi_1\) summation theorem for Macdonald polynomials , The Ramanujan J. 2 (1996), 379-386. · Zbl 0916.33013 · doi:10.1023/A:1009707201333
[17] I.G. Macdonald, Affine root systems and Dedekind’s \(\eta\)-function , Invent. Math. 15 (1972), 91-143. · Zbl 0244.17005 · doi:10.1007/BF01418931
[18] S.C. Milne, An elementary proof of the Macdonald identities for \(A^(1)_\ell\) , Adv. Math. 57 (1985), 34-70. · Zbl 0586.33011 · doi:10.1016/0001-8708(85)90105-7
[19] ——–, A \(U(n)\) generalization of Ramanujan’s \(_1\Psi_1\) summation , J. Math. Anal. Appl. 118 (1986), 263-277. · Zbl 0594.33008 · doi:10.1016/0022-247X(86)90308-2
[20] ——–, Basic hypergeometric series very well-poised in \(U(n)\) , J. Math. Anal. Appl. 122 (1987), 223-256. · Zbl 0607.33014 · doi:10.1016/0022-247X(87)90355-6
[21] ——–, Multiple \(q\)-series and \(U(n)\) generalizations of Ramanujan’s \(_1\psi_1\) sum , in Ramanujan revisited , G.E. Andrews, et al., eds., Academic Press, New York, 1988. · Zbl 0653.10012
[22] ——–, The multidimensional \(_1\Psi_1\) sum and Macdonald identities for \(A^(1)_n\) , in Theta functions Bowdoin 1987, L. Ehrenpreis and R.C. Gunning, eds., 1989. · Zbl 0677.33004
[23] ——–, Summation theorems for basic hypergeometric series of Schur function argument , in Progress in approximation theory , A.A. Gonchar and E.B. Saff, eds., Springer-Verlag, New York, 1992. · Zbl 0788.33010
[24] ——–, A \(q\)-analog of a Whipple’s transformation for hypergeometric series in \(U(N)\) , Adv. Math. 108 (1994), 1-76. · Zbl 0809.33010 · doi:10.1006/aima.1994.1065
[25] ——–, Balanced \(_3\phi_2\) summation theorems for \(U(n)\) basic hypergeometric series , Adv. Math. 131 (1997), 93-187. · Zbl 0886.33014 · doi:10.1006/aima.1997.1658
[26] S.C. Milne and G.M. Lilly, Consequences of the \(A_l\) and \(C_l\) Bailey transform and Bailey lemma , Discrete Math. 139 (1995), 319-346. · Zbl 0870.33012 · doi:10.1016/0012-365X(94)00139-A
[27] S.C. Milne and J.W. Newcomb, \(U(n)\) very-well-poised \(_10\phi_9\) transformations , J. Comput. Appl. Math. 68 (1996), 239-285. · Zbl 0870.33013 · doi:10.1016/0377-0427(95)00248-0
[28] M. Schlosser, Multidimensional matrix inversions and \(A_r\) and \(D_r\) basic hypergeometric series , The Ramanujan J. 1 (1997), 243-274. · Zbl 0934.33006 · doi:10.1023/A:1009705129155
[29] ——–, Some new applications of matrix inversions in \(A_r\) , The Ramanujan J. 3 (1999), 405-461. · Zbl 0944.33016 · doi:10.1023/A:1009809424076
[30] ——–, A new multidimensional matrix inversion in \(A_r\) , Contemp. Math. 254 (2000), 413-432. · Zbl 0954.33007
[31] D. Stanton, An elementary approach to the Macdonald identities , in \(q\)-series and partitions , D. Stanton, ed., Springer-Verlag, 1989. · Zbl 0736.05010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.