×

Soliton theory, symmetric functions and matrix integrals. (English) Zbl 1146.37355

Summary: We consider a certain scalar product of symmetric functions which is parameterized by a function \(r\) and an integer \(n\). On the one hand we have a fermionic representation of this scalar product. On the other hand we get a representation of this product with the help of multi-integrals. This gives links between a theory of symmetric functions, soliton theory and models of random matrices (such as a model of normal matrices).

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
05E05 Symmetric functions and generalizations
33C70 Other hypergeometric functions and integrals in several variables
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
60A10 Probabilistic measure theory

References:

[1] Adler, M., Shiota, T. and van Moerbeke, P.: Phys. Lett. A 194(1-2) (1994), 33-34. · Zbl 0961.37514 · doi:10.1016/0375-9601(94)00306-A
[2] Adler, M. and van Moerbeke, P.: Integrals over Grassmannians and random permutations, math.CO/0110281. · Zbl 1036.60029
[3] Chau, L.-L. and Zaboronsky, O.: On the structure of correlation functions in the normal matrix models, Comm. Math. Phys. 196 (1998), 203-247; hep-th/9711091. · Zbl 0907.35123 · doi:10.1007/s002200050420
[4] Date, E., Jimbo, M., Kashiwara, M. and Miwa, T.: Transformation groups for soliton equations, In: M. Jimbo and T. Miwa (eds), Nonlinear Integrable Systems ? Classical Theory and Quantum Theory, World Scientific, 1983, pp. 39-120. · Zbl 0571.35098
[5] Dickey, L. A.: Soliton Equations and Hamiltonian System, World Scientific, Singapore, 1991. · Zbl 0753.35075
[6] Dickey, L. A.: Modern Phys. Lett. A 8 (1993), 1357-1377. · Zbl 1020.37556 · doi:10.1142/S0217732393001082
[7] Dryuma, V.: JETF Lett. 19 (1974), 219.
[8] Gross, K. I. and Richards, D. S.: Special functions of matrix arguments. I: Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc. 301 (1987), 781-811. · Zbl 0626.33010
[9] Harish Chandra: Amer. J. Math. 80 (1958), 241. · Zbl 0093.12801 · doi:10.2307/2372786
[10] Harnad, J. and Orlov, A. Yu.: Schur function expansions of matrix integrals, CRM Preprint, Montreal, 2001. · Zbl 1148.82012
[11] Harnad, J. and Orlov, A. Yu.: Scalar products of symmetric functions and matrix integrals, nlin.SI/0211051, reported at the NEEDS-2002 meeting in Cadiz, to be published in Teor. Mat. Phys. 137(2) (November 2003).
[12] Itzykson, C. and Zuber, J. B.: J. Math. Phys. 21 (1980), 411. · Zbl 0997.81549 · doi:10.1063/1.524438
[13] Kadomtsev, V. V. and Petviashvili, V. I.: Soviet Phys. Dokl. 15 (1970), 539.
[14] Konopelchenko, B. and Alonso, L. M.: The KP hierarchy in Miwa coordinates, solvint/9905005. · Zbl 0935.37031
[15] Macdonald, I. G.: Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995. · Zbl 0824.05059
[16] Mehta, M. L.: Random Matrices, Academic Press, Inc., 1991.
[17] Mikhailov, A. V.: On the integrability of two-dimensional generalization of the Toda lattice, Letters in Journal of Experimental and Theoretical Physics 30 (1979), 443-448.
[18] Milne, S. C.: Summation theorems for basic hypergeometric series of Schur function argument, In: A. A. Gonchar and E. B. Saff (eds), Progress in Approximation Theory, Springer-Verlag, New York, 1992, pp. 51-77. · Zbl 0788.33010
[19] Mineev-Weinstein, M., Wiegmann, P. and Zabrodin, A.: Integrable structure of interface dynamics, LAUR-99-0703.
[20] Miwa, T.: On Hirota?s difference equations, Proc. Japan Acad. Ser. A 58 (1982), 9-12. · Zbl 0508.39009 · doi:10.3792/pjaa.58.9
[21] Morozov, A. Yu.: Integrability and matrix models, Uspekhi Fiz. Nauk 164 (1994), 3-62. · doi:10.3367/UFNr.0164.199401a.0003
[22] Orlov, A. Yu.: Vertex operators, ? bar problem, symmetries, Hamiltonian and Lagrangian formalism of (2+1) dimensional integrable systems, In: V. G. Bar?yakhtar and V. E. Zakharov (eds), Plasma Theory and Nonlinear and Turbulent Processes in Physics, Proc. III Kiev Intern. Workshop, Vol. I. Proceedings (Kiev 1987), World Scientific, Singapore, 1988, pp. 116-134.
[23] Orlov, A. Yu.: Hypergeometric functions related to Schur Q-polynomials and BKP equation, to be published in Teor. Mat. Phys. 137(2) (November 2003).
[24] Orlov, A. Yu. and Scherbin, D. M.: Fermionic representation for basic hypergeometric functions related to Schur polynomials, nlin.SI/0001001.
[25] Orlov, A. Yu. and Winternitz, P.: Theoret. Math. Phys. 113 (1997), 1393-1417. · doi:10.1007/BF02634166
[26] Orlov, A. Yu. and Scherbin, M. D.: Milne?s hypergeometric functions in terms of free fermions, J. Phys. A: Math. Gen. 34 (2001), 2295-2310. · Zbl 0980.33009 · doi:10.1088/0305-4470/34/11/321
[27] Orlov, A. Yu. and Scherbin, D. M.: Multivariate hypergeometric functions as tau functions of Toda lattice and Kadomtsev?Petviashvili equation, Physica D 152-153 (March 2001), 51-56. · Zbl 0988.37091 · doi:10.1016/S0167-2789(01)00158-0
[28] Orlov, A. Yu. and Scherbin, D. M.: Hypergeometric solutions of soliton equations, Teor. Mat. Phys. 128(1) (2001), 84-108. · Zbl 0992.37063
[29] Takasaki, K.: Initial value problem for the Toda lattice hierarchy, Adv. Stud. Pure Math. 4 (1984), 139-163. · Zbl 0577.58019
[30] Takasaki, K.: The Toda lattice hierarchy and generalized String equation, Comm. Math. Phys. 181 (1996), 131; hep-th/9506089, June 1995. · Zbl 0857.35107 · doi:10.1007/BF02101675
[31] Takebe, T.: Representation theoretical meaning of initial value problem for the Toda lattice hierarchy I, LMP 21 (1991), 77-84. · Zbl 0733.35098
[32] Takebe, T.: Representation theoretical meaning of initial value problem for the Toda lattice hierarchy II, Publ. RIMS, Kyoto Univ. 27 (1991), 491-503. · Zbl 0785.35106 · doi:10.2977/prims/1195169665
[33] Takebe, T. and Takasaki, K.: Integrable hierarchies and dispersionless limit, Rev. Math. Phys. 7 (1995), 743-808; hep-th/94050096. · Zbl 0838.35117 · doi:10.1142/S0129055X9500030X
[34] Ueno, K. and Takasaki, K.: Adv. Stud. Pure Math. 4 (1984), 1-95.
[35] Vilenkin, N. Ya. and Klimyk, A. U.: Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions, Kluwer Academic Publishers, 1992. · Zbl 0778.22001
[36] Zabrodin, A., Kharchev, S., Mironov, A., Marshakov, A. and Orlov, A.: Nuclear Phys. B (1992).
[37] Zakharov, V. E. and Shabat, A. B.: J. Funct. Anal. Appl. 8 (1974), 226, 13 (1979), 166. · Zbl 0303.35024 · doi:10.1007/BF01075696
[38] Zakharov, V. E., Manakov, S. V., Novikov, S. P. and Pitaevsky, L. P.: The Theory of Solitons. The Inverse Scattering Method.
[39] Zinn-Justion, P.: HCIZ integral and 2D Toda lattice hierarchy, math-ph/0202045.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.