×

BKP and projective Hurwitz numbers. (English) Zbl 1368.05009

Summary: We consider \(d\)-fold branched coverings of the projective plane \(\mathbb {RP}^2\) and show that the hypergeometric tau function of the BKP hierarchy of Kac and van de Leur is the generating function for weighted sums of the related Hurwitz numbers. In particular, we get the \(\mathbb {RP}^2\) analogues of the \(\mathbb {CP}^1\) generating functions proposed by A. Okounkov [Math. Res. Lett. 7, No. 4, 447–453 (2000; Zbl 0969.37033)] and by I. P. Goulden and D. M. Jackson [Adv. Math. 219, No. 3, 932–951 (2008; Zbl 1158.37026); Proc. Am. Math. Soc. 125, No. 1, 51–60 (1997; Zbl 0861.05006)]. Other examples are Hurwitz numbers weighted by the Hall-Littlewood and by the Macdonald polynomials. We also consider integrals of tau functions which generate Hurwitz numbers related to base surfaces with arbitrary Euler characteristics \(e\), in particular projective Hurwitz numbers \(e=1\).

MSC:

05A15 Exact enumeration problems, generating functions
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
17B80 Applications of Lie algebras and superalgebras to integrable systems
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures

References:

[1] Alexandrov, A., Mironov, A., Morozov, A., Natanzon, S.: Integrability of Hurwitz partition functions. I. Summary. J. Phys. A Math. Theor. 45, 045209 (2012). arXiv:1103.4100 · Zbl 1259.37040 · doi:10.1088/1751-8113/45/4/045209
[2] Alexandrov, A., Mironov, A., Morozov, A., Natanzon, S.: On KP-integrable Hurwitz functions. JHEP 11, 080 (2014). arXiv:1405.1395 · Zbl 1333.81192 · doi:10.1007/JHEP11(2014)080
[3] Alexandrov, A., Zabrodin, A.V.: Free fermions and tau-functions. J. Geom. Phys. 67, 37-80 (2013). arXiv:1212.6049 · Zbl 1267.81196 · doi:10.1016/j.geomphys.2013.01.007
[4] Alexandrov, A.: Matrix models for random partitions. Nucl. Phys. B 851, 620-650 (2011) · Zbl 1229.81211 · doi:10.1016/j.nuclphysb.2011.06.007
[5] Alexeevski, A.A., Natanzon, S.M.: Noncommutative two-dimensional field theories and Hurwitz numbers for real algebraic curves. Sel. Math. N.S. 12(3), 307-377 (2006). arXiv:math/0202164 · Zbl 1158.57304
[6] Alekseevskii, A.V., Natanzon, S.M.: The algebra of bipartite graphs and Hurwitz numbers of seamed surfaces. Izv. Math. 72(4), 627-646 (2008) · Zbl 1158.30029 · doi:10.1070/IM2008v072n04ABEH002416
[7] Alling, N.L., Greenleaf, N.: Foundation of the theory of Klein surfaces. In: Lecture Notes in Mathematics, vol. 219. Springer, Berlin (1971) · Zbl 0225.30001
[8] Aganagic, M., Ooguri, H., Saulina, N., Vafa, C.: Black holes, \[q\] q-deformed 2D Yang-Mills and nonperturbative topological strings. Nucl. Phys. B 715, 304-348 (2005) · Zbl 1207.81147 · doi:10.1016/j.nuclphysb.2005.02.035
[9] Ambjorn, J. and Chekhov, L.: The matrix model for hypergeometric Hurwitz number. Theor. Math. Phys. 181(3), 1486-1498 (2014). arXiv:1409.3553 · Zbl 1318.33022
[10] Ambjorn, J., Chekhov, L.: The matrix model for dessins d’enfants. Ann. Inst. Henri Poincaré D 1(3), 337-361 (2014). arXiv:1404.4240 · Zbl 1304.81130
[11] Bloch, S., Okounkov, A.: The characters of the infinite wedge representation. Adv. Math. 149(1), 1-60 (2000). arXiv:alg-geom/9712009 · Zbl 0978.17016
[12] Brézin, E., Hikami, S.: Intersection numbers from the antisymmetric Gaussian matrix model. Commun. Math. Phys. 7, 50 (2008). arXiv:0804.4531 · Zbl 1152.14300
[13] Carrel, S.R.: The non-orientable map asymptotic constant \[p_g\] pg (2014). arXiv:1406.1760
[14] de Mello Koch, R., Ramgoolam, S.: From matrix models and quantum fields to Hurwitz space and the absolute Galois group (2010). arXiv:1002.1634 · Zbl 1105.14076
[15] Dijkgraaf, R.; Dijkgraaf, R. (ed.); Faber, C. (ed.); Geer, G. (ed.), Mirror symmetry and elliptic curves. The moduli space of curves, No. 129 (1995), Basel · Zbl 0827.00037
[16] Dunin-Barkowski, P., Kazarian, M., Orantin, N., Shadrin, S., Spitz, L.: Polynomiality of Hurwitz numbers, Bouchard-Marino conjecture, and a new proof of the ELSV formula (2015). arXiv:1307.4729 · Zbl 1318.14051
[17] Ekedahl, T., Lando, S.K., Shapiro, V., Vainshtein, A.: On Hurwitz numbers and Hodge integrals. C.R. Acad. Sci. Paris Ser. I. Math 146(2), 1175-1180 (1999) · Zbl 0953.14006 · doi:10.1016/S0764-4442(99)80435-2
[18] Frobenius, G.: Uber Gruppencharaktere. Sitzber, Kolniglich Preuss. Akad. Wiss, Berlin (1896) · JFM 27.0092.01
[19] Frobenius, G., Schur, I.: Uber die reellen Darstellungen der endichen Druppen. Sitzber, Kolniglich Preuss. Akad. Wiss, Berlin (1906) · JFM 37.0161.01
[20] Goulden, I.P., Jackson, D.M.: The KP hierarchy, branched covers, and triangulations. Adv. Math. 219, 932-951 (2008) · Zbl 1158.37026 · doi:10.1016/j.aim.2008.06.013
[21] Goulden, I.P., Jackson, D.M.: Transitive factorizations into transpositions and holomorphic mappings on the sphere. Proc. Am. Math. Soc. 125(1), 51-60 (1997) · Zbl 0861.05006 · doi:10.1090/S0002-9939-97-03880-X
[22] Goulden, I.P., Guay-Paquet, M., Novak, J.: Monotone Hurwitz numbers and HCIZ integral. Ann. Math. Blaise Pascal 21, 71-99 (2014) · Zbl 1296.05202 · doi:10.5802/ambp.336
[23] Goulden, I.P., Guay-Paquet, M., Novak, J.: Monotone Hurwitz numbers in genus zero. Can. J. Math. 65(5), 1020-1042 (2013). arXiv:1204.2618 · Zbl 1280.05008 · doi:10.4153/CJM-2012-038-0
[24] Guay-Paquet, M., Harnad, J.: 2D Toda \[\tau\] τ-functions as combinatorial generating functions. Lett. Math. Phys. 105, 827-852 (2015) · Zbl 1347.05245 · doi:10.1007/s11005-015-0756-z
[25] Guay-Paquet, M., Harnad, J.: Generating functions for weighted Hurwitz numbers. J. Math. Phys. (To appear) (2014). arXiv:1408.6766 · Zbl 1369.05013
[26] Harnad, J., Orlov, A.Y.: Scalar product of symmetric functions and matrix integrals. Theor. Math. Phys. 137(3), 1676-1690 (2003) · Zbl 1178.82027 · doi:10.1023/B:TAMP.0000007916.13779.17
[27] Harnad, J., Orlov, A. Y.: Matrix integrals as Borel sums of Schur function expansions. In: Abenda S., Gaeta G. (eds.) Proceedings of the Symmetry and Perturbation Theory 2002, Cala Gonoone (Sardinia), May 1-26, pp. 116-123. World Scientific, Singapore (2002). arXiv:nlin/0209035 · Zbl 1329.05014
[28] Harnad, J., Orlov, A.Y.: Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions. J. Phys. A 39, 8783-8809 (2006) · Zbl 1148.82012 · doi:10.1088/0305-4470/39/28/S03
[29] Harnad, J., Orlov, A.Y.: Hypergeometric \[\tau\] τ-functions, Hurwitz numbers and enumeration of paths. Commun. Math. Phys. 338, 267-284 (2015). arXiv:1407.7800 · Zbl 1347.33035 · doi:10.1007/s00220-015-2329-5
[30] Harnad, J.: Multispecies quantum Hurwitz numbers. SIGMA 11, 097 (2015). arXiv:1410.8817 · Zbl 1329.05014
[31] Harnad, J.: Weighted Hurwitz numbers and hypergeometric \[\tau\] τ-functions: an overview. In: AMS Proceedings of Symposia in Pure Mathematics, vol. 93, pp. 289-333 (2016). arXiv:1504.03408 · Zbl 1358.33004
[32] Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943-1001 (1983) · Zbl 0557.35091 · doi:10.2977/prims/1195182017
[33] Jones, G.A.: Enumeration of homomorphisms and surface coverings. Q. J. Math. 2(46), 485-507 (1995) · Zbl 0859.57001 · doi:10.1093/qmath/46.4.485
[34] Kac, V., van de Leur, J.: The geometry of spinors and the multicomponent BKP and DKP hierarchies. In: CRM Proceedings and Lecture Notes, vol. 14, pp. 159-202 (1998) · Zbl 0924.35114
[35] Kazarian, M., Lando, S.: Combinatorial solutions to integrable hierarchies. Uspekhi Mat. Nauk 70, 3(423), 77-106 (2015). English translation: Russ. Math. Surv. 70, 453-482 (2015). arXiv:1512.07172 · Zbl 1330.14061
[36] Kazarian, M.E., Lando, S.K.: An algebro-geometric proof of Witten’s conjecture. J. Am. Math. Soc. 20(4), 1079-1089 (2007) · Zbl 1155.14004 · doi:10.1090/S0894-0347-07-00566-8
[37] Kazarian, M., Zograph, P.: Virasoro constraints and topological recursion for Grothendieck’s dessin counting Lett. Math. Phys. 105(8), 1057-1084 (2015). arXiv:1406.5976 · Zbl 1332.37051
[38] Kharchev, S., Marshakov, A., Mironov, A., Morozov, A.: Generalized Kazakov-Migdal-Kontsevich model: group theory aspects. Int. J. Mod. Phys. A10, 2015 (1995) · Zbl 0985.81639 · doi:10.1142/S0217751X9500098X
[39] Lando, S. K., Zvonkin, A. K.: Graphs on surfaces and their applications. In: Encyclopaedia of Mathematical Sciences, Volume 141, with Appendix by D. Zagier. Springer, New York (2004) · Zbl 1040.05001
[40] Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995) · Zbl 0824.05059
[41] Mednykh, A.D.: Determination of the number of nonequivalent covering over a compact Riemann surface. Sov. Math. Dokl. 19, 318-320 (1978) · Zbl 0395.30034
[42] Mednykh, A.D., Pozdnyakova, G.G.: The number of nonequivalent coverings over a compact nonorientable surface. Sibirs. Mat. Zh. 27, 123-131, 199 (1986) · Zbl 0598.30059
[43] Milne, SC; Gonchar, AA (ed.); Saff, EB (ed.), Summation theorems for basic hypergeometric series of Schur function argument, 51-77 (1992), New York · Zbl 0788.33010 · doi:10.1007/978-1-4612-2966-7_3
[44] Mironov, A.D., Morozov, A.Y., Natanzon, S.M.: Complete set of cut-and-join operators in the Hurwitz-Kontsevich theory. Theor. Math. Phys. 166(1), 1-22 (2011) · Zbl 1312.81125 · doi:10.1007/s11232-011-0001-6
[45] Mironov, A.D., Morozov, A.Y., Natanzon, S.M.: Algebra of differential operators associated with Young diagrams. J. Geom. Phys. 62, 148-155 (2012) · Zbl 1242.22008 · doi:10.1016/j.geomphys.2011.09.001
[46] Mulase, M., Waldron, A.: Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs Com. Math. Phys. 240, 553-586 (2003). arXiv:math-ph/0206011 · Zbl 1033.81062
[47] Natanzon, S.M.: Klein surfaces. Russ. Math. Surv. 45(6), 53-108 (1990) · Zbl 0734.30037 · doi:10.1070/RM1990v045n06ABEH002713
[48] Natanzon, S.M.: Moduli of Riemann surfaces, real algebraic curves and their superanalogs. Transl. Math. Monogr. AMS 225, 160 (2004) · Zbl 1056.14033
[49] Natanzon, S.M.: Simple Hurwitz numbers of a disk. Funct. Anal. Appl. 44(1), 44-58 (2010) · Zbl 1271.14083 · doi:10.1007/s10688-010-0004-3
[50] Natanzon, S.M., Orlov, A.Y.: Hurwitz numbers and BKP hierarchy (2014). arXiv:1407.8323 · Zbl 1368.05009
[51] Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7, 447-453 (2000). arXiv:math/0004128 · Zbl 0969.37033 · doi:10.4310/MRL.2000.v7.n4.a10
[52] Okounkov, A., Pandharipande, R.: Gromov-Witten theory, Hurwitz theory and completed cycles. Ann. Math. 163, 517 (2006). arXiv:math.AG/0204305 · Zbl 1105.14076 · doi:10.4007/annals.2006.163.517
[53] Orlov, A.Y.: Soliton theory, symmetric functions and matrix integrals. Acta Appl. Math. 86(1-2), 131-158 (2005) · Zbl 1146.37355 · doi:10.1007/s10440-005-0467-z
[54] Orlov, A.Y.: Deformed Ginibre ensembles and integrable systems. Phys. Lett. A 378, 319-328 (2014) · Zbl 1396.81102 · doi:10.1016/j.physleta.2013.11.025
[55] Orlov, A.Y., Scherbin, D.: Fermionic representation for basic hypergeometric functions related to Schur polynomials (2000). arXiv preprint arXiv:nlin/0001001 · Zbl 1396.81102
[56] Orlov, A.Y., Scherbin, D.: Milne’s hypergeometric functions in terms of free fermions. J. Phys. A Math. Gen. 34(11), 2295 (2001) · Zbl 0980.33009 · doi:10.1088/0305-4470/34/11/321
[57] Orlov, A.Y., Scherbin, D.: Hypergeometric solutions of soliton equations. Theor. Math. Phys. 128(1), 906-926 (2001) · Zbl 0992.37063 · doi:10.1023/A:1010402200567
[58] Orlov, A.Y., Shiota, T., Takasaki, K.: Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions (2012). arXiv:1201.4518 · Zbl 1395.37048
[59] Orlov, A.Y., Shiota, T., Takasaki, K.: Pfaffian structures and certain solutions to BKP hierarchies II. Multiple integrals (2016). arXiv:1611.02244
[60] Orlov, A.Y., Shiota, T.: Schur function expansion for normal matrix model and associated discrete matrix models. Phys. Lett. A 343(5), 384-396 (2004) · Zbl 1194.81148 · doi:10.1016/j.physleta.2005.05.096
[61] Orlov, A.Y.: New solvable matrix integrals. Int. J. Mod. Phys. A 19(Suppl. 02), 276-293 (2004) · Zbl 1080.81021 · doi:10.1142/S0217751X04020476
[62] Orlov, A.Y.: Matrix integrals and Hurwitz numbers (2017). preprint arXiv:1701.02296
[63] Szabo, R., Tierz, M.: Chern-Simons matrix models, two-dimensional Yang-Mills theory, and the Sutherland model. J. Phys. A 43, 265401 (2010). arXiv:1003.1228 · Zbl 1229.81186
[64] van de Leur, J.W.: Matrix integrals and geometry of spinors. J. Nonlinear Math. Phys. 8, 288-311 (2001) · Zbl 0984.37079 · doi:10.2991/jnmp.2001.8.2.9
[65] van de Leur, J.W., Orlov, A.Y.: Pfaffian and determinantal tau functions I. Lett. Math Phys. 105(11), 1499-1531 (2015) · Zbl 1395.37048 · doi:10.1007/s11005-015-0786-6
[66] Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathemetical physics by the method of inverse scattering. I J. Funct. Anal. Appl. 8, 226 (1974) · Zbl 0303.35024
[67] Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathemetical physics by the method of inverse scattering. II J. Funct. Anal. Appl. 13, 166 (1979) · Zbl 0448.35090
[68] Zhou, J.: Hodge integrals, Hurwitz numbers and symmetric groups (2003). arXiv preprint arXiv:math/0308024
[69] Zograf, P.: Enumeration of Grothendieck’s dessins and KP hierarchy Int. Math. Res. Not. 24, 13533-15344 (2015). arXiv:1312.2538 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.