×

Branching rules for symmetric functions and \(\mathfrak{sl}_n\) basic hypergeometric series. (English) Zbl 1227.05261

Summary: A one-parameter rational function generalisation \(R_\lambda (X;b)\) of the symmetric Macdonald polynomial and interpolation Macdonald polynomial is studied from the point of view of branching rules. We establish a Pieri formula, evaluation symmetry, principal specialisation formula and \(q\)-difference equation for \(R_\lambda (X;b)\). Our main motivation for studying \(R_\lambda (X;b)\) is that it leads to a new class of \(\mathfrak{sl}_n\) basic hypergeometric series, generalising the well-known basic hypergeometric series with Macdonald polynomial argument. For these new series we prove \(\mathfrak{sl}_n\) analogues of the \(q\)-Gauss and \(q\)-Kummer-Thomae-Whipple formulas. In a special limit, one of our results implies an elegant binomial formula for Jack polynomials, different to that of Kaneko, Lassalle, Okounkov and Olshanski.

MSC:

05E05 Symmetric functions and generalizations
33D52 Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.)
33D67 Basic hypergeometric functions associated with root systems
Full Text: DOI

References:

[1] Baker, T. H.; Forrester, P. J., Transformation formulas for multivariable basic hypergeometric series, Methods Appl. Anal., 6, 147-164 (1999) · Zbl 0956.33013
[2] Gasper, G.; Rahman, M., Basic Hypergeometric Series, Encyclopedia Math. Appl., vol. 96 (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1129.33005
[3] Kaneko, J., Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal., 24, 1086-1110 (1993) · Zbl 0783.33008
[4] Kaneko, J., \(q\)-Selberg integrals and Macdonald polynomials, Ann. Sci. Éc. Norm. Super., 29, 583-637 (1996) · Zbl 0910.33011
[5] Kaneko, J., A triple product identity for Macdonald polynomials, J. Math. Anal. Appl., 200, 355-367 (1996) · Zbl 0855.33010
[6] Knop, F., Symmetric and non-symmetric quantum Capelli polynomials, Comment. Math. Helv., 72, 84-100 (1997) · Zbl 0954.05049
[7] Korányi, A., Hua-type integrals, hypergeometric functions and symmetric polynomials, (International Symposium in Memory of Hua Loo Keng, vol. II (1991), Springer: Springer Berlin), 169-180 · Zbl 0814.33009
[8] Lascoux, A., Symmetric Functions and Combinatorial Operators on Polynomials, CBMS Reg. Conf. Ser. Math., vol. 99 (2003), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 1039.05066
[9] Lascoux, A.; Rains, E. M.; Warnaar, S. O., Nonsymmetric interpolation Macdonald polynomials and \(gl_n\) basic hypergeometric series, Transform. Groups, 14, 613-647 (2009) · Zbl 1179.33027
[10] Lassalle, M., Une formule du binôme généralisée pour les polynômes de Jack, Rendus Acad. Sci. Paris Sér. I, 310, 253-256 (1990) · Zbl 0698.33010
[11] Lassalle, M., Coefficients binomiaux généralisés et polynômes de Macdonald, J. Funct. Anal., 158, 289-324 (1998) · Zbl 0914.33012
[12] Lassalle, M., Quelques valeurs prises par les polynômes de Macdonald décalés, Ann. Inst. Fourier, 49, 543-561 (1999) · Zbl 0930.11006
[13] Macdonald, I. G., A new class of symmetric functions, Sém. Lothar. Combin., B20a (1988), 41 pp · Zbl 0962.05507
[14] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Oxford University Press: Oxford University Press New York · Zbl 0487.20007
[15] I.G. Macdonald, Hypergeometric series II, unpublished manuscript.; I.G. Macdonald, Hypergeometric series II, unpublished manuscript.
[16] Milne, S. C., Summation theorems for basic hypergeometric series of Schur function argument, (Gonchar, A. A.; Saff, E. B., Progress in Approximation Theory. Progress in Approximation Theory, Springer Ser. Comput. Math., vol. 19 (1992), Springer: Springer New York), 51-77 · Zbl 0788.33010
[17] Mimachi, K.; Noumi, M., A reproducing kernel for nonsymmetric Macdonald polynomials, Duke Math. J., 91, 621-634 (1998) · Zbl 0947.33014
[18] Okounkov, A., Binomial formula for Macdonald polynomials and applications, Math. Res. Lett., 4, 533-553 (1997) · Zbl 0911.33012
[19] Okounkov, A., (Shifted) Macdonald polynomials: \(q\)-integral representation and combinatorial formula, Compos. Math., 112, 147-182 (1998) · Zbl 0897.05085
[20] Okounkov, A., BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups, 3, 181-207 (1998) · Zbl 0941.17005
[21] Okounkov, A., Combinatorial formula for Macdonald polynomials and generic Macdonald polynomials, Transform. Groups, 8, 293-305 (2003) · Zbl 1036.05050
[22] Okounkov, A.; Olshanski, G., Shifted Jack polynomials, binomial formula, and applications, Math. Res. Lett., 4, 69-78 (1997) · Zbl 0995.33013
[23] Rains, E. M., \(BC_n\)-symmetric polynomials, Transform. Groups, 10, 63-132 (2005) · Zbl 1080.33018
[24] Rains, E. M., \(BC_n\)-symmetric abelian functions, Duke Math. J., 135, 99-180 (2006) · Zbl 1101.33012
[25] Rains, E. M., Transformations of elliptic hypergeometric integrals, Ann. of Math. (2), 171, 169-243 (2010) · Zbl 1209.33014
[26] Rains, E. M., Elliptic Littlewood identities · Zbl 1263.33011
[27] Sahi, S., Interpolation, integrality, and a generalization of Macdonaldʼs polynomials, Int. Math. Res. Not. IMRN, 457-471 (1996) · Zbl 0861.05063
[28] Warnaar, S. O., \(q\)-Selberg integrals and Macdonald polynomials, Ramanujan J., 10, 237-268 (2005) · Zbl 1086.33018
[29] Warnaar, S. O., Bisymmetric functions, Macdonald polynomials and \(sl_3\) basic hypergeometric series, Compos. Math., 144, 271-303 (2008) · Zbl 1182.05129
[30] Warnaar, S. O., A Selberg integral for the Lie algebra \(A_n\), Acta Math., 203, 269-304 (2009) · Zbl 1243.33053
[31] Warnaar, S. O., The \(sl_3\) Selberg integral, Adv. Math., 224, 499-524 (2010) · Zbl 1194.33014
[32] Yan, Z. M., Generalized hypergeometric functions, C. R. Acad. Sci. Paris Sér. I Math., 310, 349-354 (1990) · Zbl 0697.33009
[33] Yan, Z. M., A class of generalized hypergeometric functions in several variables, Canad. J. Math., 44, 1317-1338 (1992) · Zbl 0769.33014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.