×

Prime power order circulant determinants. (English) Zbl 1539.11053

Let \(\mathcal{S}(\mathbb{Z}_n)=\{D(a_0,\ldots,a_{n-1}):a_i\in\mathbb{Z}\}\) be the set of all the determinants of integral \(n\times n\) circulant matrices, i.e., \[ D(a_0,\ldots,a_{n-1})=\det \begin{pmatrix} a_0&a_{n-1}&\cdots &a_1\\ a_1&a_0&\ldots&a_2\\ \vdots & \vdots &\ddots &\vdots\\ a_{n-1}& a_{n-2}&\ldots &a_0 \end{pmatrix}. \] The set \(\mathcal{S}(\mathbb{Z}_n)\) is closed under multiplication and can be defined more broadly for a finite group \(G\). Here, \(G=\mathbb{Z}_n\) is a cyclic group of order \(n\). The complete description of \(\mathcal{S}(G)\) is known only for groups of order less than \(16\). By the results of H. T. Laquer [in: The Fibonacci sequence, Collect. Manuscr., 18th anniv. Vol., The Fibonacci Assoc., 212–217 (1980; Zbl 0524.15007)] and M. Newman [Ill. J. Math. 24, 156–158 (1980; Zbl 0414.15007)], we have \(n^2\mathbb{Z}\) and \(\{m\in \mathbb{Z}:\gcd(m,n)=1\}\) are both contained in \( \mathcal{S}(\mathbb{Z}_n)\). Furthermore, certain divisibility conditions for \(m\in\mathcal{S}(\mathbb{Z}_n)\) are known.
The current paper describes the integers contained in \(\mathcal{S}(\mathbb{Z}_{p^t}),\) where \(p\ge 5\) is a prime number and \(t\) is an integer greater or equal to two, or \(p=3\) and \(t\ge 3.\) The complete description of \(\mathcal{S}(\mathbb{Z}_{25})\) is given in Theorem 1.2, with representation including the use of special prime numbers congruent to 1 modulo 5, so-called perissads. Similarly, the description of \(\mathcal{S}(\mathbb{Z}_{27})\) is given (in Theorem 1.3), invoking a certain family of primes congruent to 1 modulo 3 and 9. Finally, in Proposition 1.4, it is shown that \(\mathcal{S}(\mathbb{Z}_{p^t})\subseteq \mathcal{S}(\mathbb{Z}_{p^{t-1}})\) for \(t\ge 2.\)

MSC:

11C20 Matrices, determinants in number theory
11R18 Cyclotomic extensions
15B36 Matrices of integers
43A40 Character groups and dual objects

Software:

OEIS

References:

[1] T. Boerkoel and C. Pinner, Minimal group determinants and the Lind-Lehmer problem for dihedral groups, Acta Arith. 186 (2018), no. 4, 377-395. · Zbl 1434.11212 · doi:10.4064/aa180708-30-8
[2] K. Conrad, The origin of representation theory, Enseign. Math. (2) 44 (1998), nos. 3-4, 361-392. · Zbl 0966.01018
[3] O. T. Dasbach and M. N. Lalín, Mahler measure under variations of the base group, Forum Math. 21 (2009), no. 4, 621-637. · Zbl 1225.11131 · doi:10.1515/FORUM.2009.031
[4] D. De Silva, M. J. Mossinghoff, V. Pigno, and C. Pinner, The Lind-Lehmer constant for certain p-groups, Math. Comp. 88 (2019), no. 316, 949-972. · Zbl 1410.11119 · doi:10.1090/mcom/3350
[5] D. De Silva and C. Pinner, The Lind-Lehmer constant for \( \mathbb{Z}_p^n\), Proc. Amer. Math. Soc. 142 (2014), no. 6, 1935-1941. · Zbl 1294.11185 · doi:10.1090/S0002-9939-2014-11954-X
[6] L. E. Dickson, Cyclotomy, higher congruences and Waring’s problem, Amer. J. Math. 57 (1935), 391-424. · JFM 61.0175.01 · doi:10.2307/2371217
[7] E. Formanek and D. Sibley, The group determinant determines the group, Proc. Amer. Math. Soc. 112 (1991), no. 3, 649-656. · Zbl 0742.20008 · doi:10.2307/2048685
[8] F. G. Frobenius, “Über die Primefactoren der Gruppendeterminante” in Gesammelte Ahhandlungen, Band III, Springer, New York, 1968, 38-77.
[9] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Grad. Texts in Math. 84, Springer, New York, 1990. · Zbl 0712.11001 · doi:10.1007/978-1-4757-2103-4
[10] N. Kaiblinger, On the Lehmer constant of finite cyclic groups, Acta Arith. 142 (2010), no. 1, 79-84. · Zbl 1197.11032 · doi:10.4064/aa142-1-7
[11] N. Kaiblinger, Progress on Olga Taussky-Todd’s circulant problem, Ramanujan J. 28 (2012), no. 1, 45-60. · Zbl 1271.15002 · doi:10.1007/s11139-011-9354-6
[12] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857), 173-175. · ERAM 053.1389cj
[13] H. T. Laquer, “Values of circulants with integer entries” in A Collection of Manuscripts Related to the Fibonacci Sequence, Fibonacci Assoc., Santa Clara, 1980, 212-217. · Zbl 0524.15007
[14] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), no. 3, 461-479. · Zbl 0007.19904
[15] E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 (1966), 118-131. · Zbl 0151.02704 · doi:10.1016/0022-247X(66)90145-4
[16] D. Lind, Lehmer’s problem for compact abelian groups, Proc. Amer. Math. Soc. 133 (2005), no. 5, 1411-1416. · Zbl 1056.43005 · doi:10.1090/S0002-9939-04-07753-6
[17] W. Lück, Lehmer’s problem for arbitrary groups, J. Topol. Anal. 14 (2022), no. 4, 901-932. · Zbl 1529.11109 · doi:10.1142/S1793525321500035
[18] D. A. Marcus, Number Fields, Universitext, Springer, New York, 1977. · Zbl 0383.12001 · doi:10.1007/978-1-4684-9356-6
[19] M. J. Mossinghoff and C. Pinner, The integer group determinants for the Heisenberg group of order \( p^3\), to appear in Michigan Math. J., preprint, arXiv:2108.04870 [math.NT].
[20] M. Newman, Determinants of circulants of prime power order, Linear and Multilinear Algebra 9 (1980), no. 3, 187-191. · Zbl 0453.12002 · doi:10.1080/03081088008817367
[21] M. Newman, On a problem suggested by Olga Taussky-Todd, Illinois J. Math. 24 (1980), no. 1, 156-158. · Zbl 0414.15007 · doi:10.1215/ijm/1256047802
[22] OEIS Foundation, The On-Line Encyclopedia of Integer Sequences, 2022, http://oeis.org.
[23] B. Paudel and C. Pinner, Minimal group determinants for dicyclic groups, Mosc. J. Comb. Number Theory 10 (2021), no. 3, 235-248. · Zbl 1479.11184 · doi:10.2140/moscow.2021.10.235
[24] B. Paudel and C. Pinner, Integer circulant determinants of order 15, Integers 22 (2022), Paper No. A4, 21 pp. · Zbl 1494.11087
[25] V. Pigno and C. Pinner, The Lind-Lehmer constant for cyclic groups of order less than 892,371,480, Ramanujan J. 33 (2014), no. 2, 295-300. · Zbl 1314.11064 · doi:10.1007/s11139-012-9443-1
[26] C. Pinner, The integer group determinants for the symmetric group of degree four, Rocky Mountain J. Math. 49 (2019), no. 4, 1293-1305. · Zbl 1451.11115 · doi:10.1216/RMJ-2019-49-4-1293
[27] C. Pinner and C. Smyth, Integer group determinants for small groups, Ramanujan J. 51 (2020), no. 2, 421-453. · Zbl 1451.11116 · doi:10.1007/s11139-018-0092-x
[28] H. W. L. Tanner, On the binomial equation \( x^p - 1 = 0 : quinquisection \), Proc. London Math. Soc. 18 (1886-1887), 214-234. · JFM 19.0085.01 · doi:10.1112/plms/s1-18.1.214
[29] H. W. L. Tanner, On complex primes formed with the fifth roots of unity, Proc. London Math. Soc. 24 (1892-1893), 223-262. · JFM 25.0309.03 · doi:10.1112/plms/s1-24.1.223
[30] O. Taussky Todd, Integral group matrices, Notices Amer. Math. Soc. 24 (1977), no. 3, A-345.
[31] G. Torelli, Sui determinanti circolanti, Rend. Accad. Sci. Fis. Mat. (Soc. Reale Napoli) 21 (1882), 83-91. · JFM 14.0103.01
[32] N. Tschebotareff, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95 (1926), no. 1, 191-228. · JFM 51.0149.04 · doi:10.1007/BF01206606
[33] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math. 83, Springer, New York, 1997. · Zbl 0966.11047 · doi:10.1007/978-1-4612-1934-7
[34] N. Yamaguchi, An extension and a generalization of Dedekind’s theorem, Int. J. Group Theory 6 (2017), no. 3, 5-11. · Zbl 1446.20020
[35] N. Yamaguchi and Y. Yamaguchi, Remark on Laquer’s theorem for circulant determinants, Int. J. Group Theory 12 (2023), no. 4, 265-269. · Zbl 1510.20025
[36] Y. Yamaguchi and N. Yamaguchi, Integer circulant determinants of order 16, to appear in Ramanujan J. (2022) · Zbl 1522.15007 · doi:10.1007/s11139-022-00599-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.