×

Extension of the complete flux scheme to systems of conservation laws. (English) Zbl 1259.65134

Summary: We present the extension of the complete flux scheme to advection-diffusion-reaction systems. For stationary problems, the flux approximation is derived from a local system boundary value problem for the entire system, including the source term vector. Therefore, the numerical flux vector consists of a homogeneous and an inhomogeneous component, corresponding to the advection-diffusion operator and the source term, respectively. For time-dependent systems, the numerical flux is determined from a quasi-stationary boundary value problem containing the time-derivative in the source term. Consequently, the complete flux scheme results in an implicit semidiscretization. The complete flux scheme is validated for several test problems.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs

Software:

HE-E1GODF; mftoolbox

References:

[1] Anthonissen, M.J.H., ten Thije Boonkkamp, J.H.M.: A compact high order finite volume scheme for advection-diffusion-reaction equations. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 1168, pp. 410–414 (2009) · Zbl 1182.65121
[2] Chapman, S., Cowling, T.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2010)
[3] Cullinan, H.T. Jr.: Analysis of the flux equations of multicomponent diffusion. Ind. Eng. Chem. Fundam. 4(2), 133–139 (1965) · doi:10.1021/i160014a005
[4] Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980) · Zbl 0459.65058
[5] Ern, A., Giovangigli, V.: Multicomponent Transport Algorithms. Springer, Heidelberg (1994) · Zbl 0820.76002
[6] Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods. In: Ciarlet, P.G., Lions, J.L. (eds.), Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000) · Zbl 0981.65095
[7] Giovangigli, V.: Mass conservation and singular multicomponent diffusion algorithms. Impact Comput. Sci. Eng. 2, 73–97 (1990) · doi:10.1016/0899-8248(90)90004-T
[8] Giovangigli, V.: Convergent iterative methods for multicomponent diffusion. Impact Comput. Sci. Eng. 3, 244–267 (1991) · Zbl 0744.65090 · doi:10.1016/0899-8248(91)90010-R
[9] Golub, G.H., Van Loan, C.F.: Matrix Computations. North Oxford Academic, Oxford (1983) · Zbl 0559.65011
[10] Higham, N.J.: Functions of Matrices, Theory and Computation. SIAM, Philadelphia (2008) · Zbl 1167.15001
[11] Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Applied Mathematics and Mathematical Computation, vol. 12. Chapman & Hall, London (1996) · Zbl 0861.65070
[12] Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences. Hemishere Publishing Corporation, New York (1980) · Zbl 0521.76003
[13] Peerenboom, K.S.C., Van Dijk, J., Ten Thije Boonkkamp, J.H.M., Liu, L., Goedheer, W.J., Van der Mullen, J.J.A.M.: Mass conservative finite volume discretization of the continuity equations in multi-component mixtures. J. Comput. Phys. 230, 3525–3537 (2011) · Zbl 1293.76090 · doi:10.1016/j.jcp.2011.02.001
[14] Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. Edwards, Philadelphia (2005)
[15] Raizer, Yu.P.: Gas Discharge Physics. Springer, Berlin (1991)
[16] Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009) · Zbl 1160.65330 · doi:10.1137/070679065
[17] Ten Thije Boonkkamp, J.H.M., Schilders, W.H.A.: An exponential fitting scheme for the electrothermal device equations specifically for the simulation of avalanche generation. Compel 12, 95–11 (1993) · Zbl 0772.65082 · doi:10.1108/eb010331
[18] Ten Thije Boonkkamp, J.H.M., Anthonissen, M.J.H.: The finite volume-complete flux scheme for advection-diffusion-reaction equations. J. Sci. Comput. 46, 47–70 (2011) · Zbl 1309.76140 · doi:10.1007/s10915-010-9388-8
[19] Ten Thije Boonkkamp, J.H.M., Anthonissen, M.J.H.: Extension of the complete flux scheme to time-dependent conservation laws. In: Kreiss, G. et al. (eds.), Numerical Mathematics and Advanced Applications 2009, Proceedings ENUMATH 2009, pp. 863–871. Springer, Berlin (2010) · Zbl 1178.65105
[20] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1997) · Zbl 0888.76001
[21] Van Dijk, J., Peerenboom, K.S.C., Liu, L., Van der Mullen, J.J.A.M., Ten Thije Boonkkamp, J.H.M.: Modelling of transport in non-equilibrium atmospheric plasmas. In: Proceedings of the XX European Conference on the Atomic and Molecular Physics of Ionized Gases, Novi Sad, Serbia, 13–17 July 2010
[22] Van’t Hof, B., Ten Thije Boonkkamp, J.H.M., Mattheij, R.M.M.: Discretization of the stationary convection-diffusion-reaction equation. Numer. Methods Partial Differ. Equ. 14, 607–625 (1998) · Zbl 0922.76261 · doi:10.1002/(SICI)1098-2426(199809)14:5<607::AID-NUM5>3.0.CO;2-M
[23] Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mathematics, vol. 29. Springer, Berlin (2000) · Zbl 0960.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.