×

On the global well-posedness of the Einstein-Yang-Mills system. (English) Zbl 1516.83004

Summary: In this paper, we present a partial result on the global well-posedness of the Cauchy problem for the Einstein-Yang-Mills system in constant mean extrinsic curvature spatial harmonic and generalized Coulomb gauges as introduced in the work of P. Mondal [“Local well-posedness of the Einstein-Yang-Mills system in CMCSHGC gauge”, Preprint, arXiv:2112.14273]. We give a small-data global existence theorem for a family of \(n + 1\) dimensional spacetimes with \(n \geq 4\), utilizing energy arguments presented in the work of L. Andersson and V. Moncrief [J. Differ. Geom. 89, No. 1, 1–47 (2011; Zbl 1256.53035)]. We observe that these energy arguments will fail for \(n = 3\) due to the conformal invariance of \(3 + 1\) Yang-Mills equations and present a gauge-covariant formulation of the Einstein-Yang-Mills system in \(3 + 1\) dimensions to show that an energy argument cannot be used to prove the global well-posedness result, regardless of the choice of gauge.
©2023 American Institute of Physics

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53Z05 Applications of differential geometry to physics
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
83F05 Relativistic cosmology
83C75 Space-time singularities, cosmic censorship, etc.

Citations:

Zbl 1256.53035

References:

[1] Mondal, P., Local well-posedness of the Einstein-Yang-Mills system in CMCSHGC gauge (2021)
[2] Andersson, L.-E.; Moncrief, V., Einstein spaces as attractors for the Einstein flow, J. Differ. Geom., 89, 1-47 (2009) · Zbl 1256.53035 · doi:10.4310/jdg/1324476750
[3] Choquet-Bruhat, Y.; York, J. W., Geometrical well posed systems for the Einstein equations, C. R. Acad. Sci., 321, 1089-1095 (1995) · Zbl 0839.53063
[4] Lindblad, H.; Rodnianski, I., The global stability of Minkowski space-time in harmonic gauge, Ann. Math., 171, 1401-1477 (2010) · Zbl 1192.53066 · doi:10.4007/annals.2010.171.1401
[5] Andersson, L.; Moncrief, V., Elliptic-hyperbolic systems and the Einstein equations, Ann. Henri Poincare, 4, 1-34 (2003) · Zbl 1028.83005 · doi:10.1007/s00023-003-0120-1
[6] Klainerman, S.; Machedon, M., Finite energy solutions of the Yang-Mills equations in \(\mathbb{R}^{3 + 1} \), Ann. Math., 142, 39-119 (1995) · Zbl 0827.53056 · doi:10.2307/2118611
[7] LeFloch, P. G.; Ma, Y., The global nonlinear stability of Minkowski space for self-gravitating massive fields, Commun. Math. Phys., 346, 603-665 (2016) · Zbl 1359.83003 · doi:10.1007/s00220-015-2549-8
[8] Rodnianski, I.; Speck, J., The stability of the irrotational Euler-Einstein system with a positive cosmological constant (2009)
[9] Speck, J., The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant, Sel. Math., 18, 633-715 (2012) · Zbl 1251.83071 · doi:10.1007/s00029-012-0090-6
[10] Lindblad, H., On the asymptotic behavior of solutions to the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., 353, 135-184 (2017) · Zbl 1373.35308 · doi:10.1007/s00220-017-2876-z
[11] Ettinger, B.; Lindblad, H., A sharp counterexample to local existence of low regularity solutions to Einstein equations in wave coordinates, Ann. Math., 185, 1, 311-330 (2017) · Zbl 1368.83010 · doi:10.4007/annals.2017.185.1.6
[12] Ames, E.; Beyer, F.; Isenberg, J.; LeFloch, P. G., A class of solutions to the Einstein equations with AVTD behavior in generalized wave gauges, J. Geom. Phys., 121, 42-71 (2017) · Zbl 1376.83006 · doi:10.1016/j.geomphys.2017.06.005
[13] Andersson, L.; Fajman, D., Nonlinear stability of the Milne model with matter, Commun. Math. Phys., 378, 261-298 (2020) · Zbl 1443.53039 · doi:10.1007/s00220-020-03745-w
[14] Wang, Q., Rough solutions of Einstein vacuum equations in CMCSH gauge, Commun. Math. Phys., 328, 1275-1340 (2014) · Zbl 1294.83009 · doi:10.1007/s00220-014-2015-z
[15] Fajman, D., Local well-posedness for the Einstein-Vlasov system, SIAM J. Math. Anal., 48, 3270-3321 (2016) · Zbl 1355.35178 · doi:10.1137/15m1030236
[16] Fajman, D.; Ofner, M.; Wyatt, Z., Slowly expanding stable dust spacetimes (2021)
[17] Fajman, D.; Wyatt, Z., Attractors of the Einstein-Klein-Gordon system, Commun. Partial Differ. Equations, 46, 1-30 (2021) · Zbl 1462.35386 · doi:10.1080/03605302.2020.1817072
[18] Moncrief, V.; Mondal, P., Could the universe have an exotic topology?, Pure Appl. Math. Q., 15, 921-965 (2019) · Zbl 1437.83167 · doi:10.4310/pamq.2019.v15.n3.a7
[19] Mondal, P., Attractors of the ‘n + 1’ dimensional Einstein-Λ flow, Classical Quantum Gravity, 37, 23, 235002 (2020) · Zbl 1479.83012 · doi:10.1088/1361-6382/abb9eb
[20] Mondal, P., The linear stability of the n + 1 dimensional FLRW spacetimes, Classical Quantum Gravity, 38, 225009 (2021) · Zbl 1510.83101 · doi:10.1088/1361-6382/ac2be2
[21] Eardley, D. M.; Moncrief, V., The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space: I. Local existence and smoothness properties, Commun. Math. Phys., 83, 171-191 (1982) · Zbl 0496.35061 · doi:10.1007/bf01976040
[22] Eardley, D. M.; Moncrief, V., The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space: II. Completion of proof, Commun. Math. Phys., 83, 193-212 (1982) · Zbl 0496.35062 · doi:10.1007/bf01976041
[23] Chruściel, P. T.; Shatah, J., Global existence of solutions of the Yang-Mills equations on globally hyperbolic four dimensional Lorentzian manifolds, Asian J. Math., 1, 530-548 (1997) · Zbl 0912.58039 · doi:10.4310/AJM.1997.v1.n3.a4
[24] Tao, T., Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, J. Differ. Equations, 189, 366-382 (2003) · Zbl 1017.81037 · doi:10.1016/s0022-0396(02)00177-8
[25] Branding, V.; Fajman, D.; Kröncke, K., Stable cosmological Kaluza-Klein spacetimes, Commun. Math. Phys., 368, 1087-1120 (2019) · Zbl 1416.35266 · doi:10.1007/s00220-019-03319-5
[26] Vazquez, O.; Mondal, P., Breakdown/continuation criteria for vacuum gravity via light cone estimates (2022)
[27] Mondal, P.; Yau, S.-T., Radiation estimates of the Minkowski space: Coupled Einstein-Yang-Mills perturbations (2022)
[28] Bartnik, R., Remarks on cosmological spacetimes and constant mean curvature surfaces, Commun. Math. Phys., 117, 615-624 (1988) · Zbl 0647.53044 · doi:10.1007/bf01218388
[29] Rendall, A. D., Constant mean curvature foliations in cosmological spacetimes, Helvetica Physica Acta, 69, 490-500 (1996) · Zbl 0867.53026
[30] Andersson, L.; Iriondo, M. S., Existence of constant mean curvature hypersurfaces in asymptotically flat spacetimes, Ann. Global Anal. Geom., 17, 503-538 (1999) · Zbl 0943.53009 · doi:10.1023/a:1006642209413
[31] Galloway, G. J.; Ling, E., Existence of CMC Cauchy surfaces from a spacetime curvature condition, Gen. Relativ. Gravitation, 50 (2018) · Zbl 1404.83005 · doi:10.1007/s10714-018-2428-7
[32] Fajman, D.; Kröncke, K., Stable fixed points of the Einstein flow with positive cosmological constant, Commun. Anal. Geom., 28, 7, 1533-1576 (2020) · Zbl 1485.53085 · doi:10.4310/cag.2020.v28.n7.a2
[33] Besse, A. L., Einstein Manifolds (1987), Springer Berlin: Springer Berlin, Heidelberg · Zbl 0613.53001
[34] Taylor, M. E., Pseudodifferential Operators and Nonlinear PDE (1991), Birkhäuser: Birkhäuser, Boston · Zbl 0746.35062
[35] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41, 7, 891-907 (1988) · Zbl 0671.35066 · doi:10.1002/cpa.3160410704
[36] Mondal, P., The nonlinear stability of n + 1 dimensional FLRW spacetimes (2022)
[37] Moncrief, V., Gribov degeneracies: Coulomb gauge conditions and initial value constraints, J. Math. Phys., 20, 4, 579-585 (1979) · Zbl 0416.58008 · doi:10.1063/1.524126
[38] Singer, I. M., Some remarks on the Gribov ambiguity, Commun. Math. Phys., 60, 7-12 (1978) · Zbl 0379.53009 · doi:10.1007/bf01609471
[39] Andersson, L.; Moncrief, V., Future complete vacuum spacetimes, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, 299-330 (2004), Birkhäuser · Zbl 1105.83001
[40] Fischer, A. E.; Moncrief, V., Quantum conformal superspace, Gen. Relativ. Gravitation, 28, 221-237 (1996) · Zbl 0846.58010 · doi:10.1007/bf02105425
[41] Friedrich, H., On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Differ. Geom., 34, 2, 275-345 (1991) · Zbl 0737.53070 · doi:10.4310/jdg/1214447211
[42] Liu, C.; Oliynyk, T. A.; Wang, J., Global existence and stability of de Sitter-like solutions to the Einstein-Yang-Mills equations in spacetime dimensions n ≥ 4 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.