×

On the ‘Stationary implies axisymmetric’ theorem for extremal black holes in higher dimensions. (English) Zbl 1190.83056

The purpose of the paper is to establish a version of the rigidity theorem for the case of degenerate (extremal) black holes. This case corresponds to a vanishing Hawking temperature and is of particular importance for the investigation of the quantum properties of black holes in string theory. Stationary, asymptotically flat, analytic black hole solutions to the vacuum or electrovacuum Einstein equations with a non-degenerate (non-extremal) event horizon for general spacetime dimension \(n > 4\), fulfil two statements: The event horizon is in fact a Killing horizon and if it is rotating, then the space time must also be axisymmetric. The paper extends this result to the case of degenerate (extremal) black holes. It is shown that the theorem still holds true, if the vector of angular velocities of the horizon satisfies a certain diophantine condition, which holds except for a set of measure zero.

MSC:

83C57 Black holes
53C80 Applications of global differential geometry to the sciences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E05 Geometrodynamics and the holographic principle
83E30 String and superstring theories in gravitational theory
83C15 Exact solutions to problems in general relativity and gravitational theory
83C22 Einstein-Maxwell equations

References:

[1] Bunting, G.L.: Proof of the Uniqueness Conjecture for Black Holes. PhD Thesis, Univ. of New England, Armidale, N.S.W., 1983
[2] Candlish G.N., Reall H.S.: On the smoothness of static multi-black hole solutions in higher dimensional Einstein-Maxwell theory. Class. Quant. Grav. 24, 6025–6039 (2007) · Zbl 1130.83013 · doi:10.1088/0264-9381/24/23/022
[3] Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971) · doi:10.1103/PhysRevLett.26.331
[4] Chruściel P.T.: On rigidity of analytic black holes. Commun. Math. Phys. 189, 1–7 (1997) · Zbl 0895.53064 · doi:10.1007/s002200050187
[5] Chrusciel, P.T., Galloway, G.J., Solis, D.: Topological censorship for Kaluza-Klein space-times. http://arxiv.org/abs/0808.3233v1[gr-qc] , 2008
[6] Chruściel P.T., Wald R.M.: Maximal hypersurfaces in asymptotically stationary space-times. Commun. Math. Phys. 163, 561 (1994) · Zbl 0803.53041 · doi:10.1007/BF02101463
[7] Chruściel P.T., Wald R.M.: On the topology of stationary black holes. Class. Quant. Grav. 11, L147 (1994) · Zbl 0820.53064 · doi:10.1088/0264-9381/11/12/001
[8] Elvang H., Rodriguez M.J.: Bicycling black rings. JHEP 0804, 045 (2008) · Zbl 1246.83112 · doi:10.1088/1126-6708/2008/04/045
[9] Emparan R., Reall H.S.: A rotating black ring in five dimensions. Phys. Rev. Lett. 88, 101101 (2002) · doi:10.1103/PhysRevLett.88.101101
[10] Emparan R., Reall H.S.: Black holes in higher dimensions. Living Rev. Rel. 11, 6 (2008) · Zbl 1166.83002
[11] Figueras P., Kunduri H.K., Lucietti J., Rangamani M.: Extremal vacuum black holes in higher dimensions. Phys. Rev. D 78, 044042 (2008) · doi:10.1103/PhysRevD.78.044042
[12] Friedrich H.: On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Diff. Geom. 34, 275 (1991) · Zbl 0737.53070
[13] Friedrich H., Racz I., Wald R.M.: On the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Commun. Math. Phys. 204, 691–707 (1999) · Zbl 0933.83022 · doi:10.1007/s002200050662
[14] Galloway G.J., Schleich K., Witt D.M., Woolgar E.: Topological censorship and higher genus black holes. Phys. Rev. D 60, 104039 (1999) · Zbl 0977.81130 · doi:10.1103/PhysRevD.60.104039
[15] Galloway G.J., Schleich K., Witt D., Woolgar E.: The AdS/CFT correspondence conjecture and topological censorship. Phys. Lett. B 505, 255 (2001) · Zbl 0977.81130 · doi:10.1016/S0370-2693(01)00335-5
[16] Gauntlett J.P., Gutowski J.B., Hull C.M., Pakis S., Reall H.S.: All supersymmetric solutions of minimal supergravity in five dimensions. Class. Quant. Grav. 20, 4587 (2003) · Zbl 1045.83001 · doi:10.1088/0264-9381/20/21/005
[17] Gibbons G.W., Horowitz G.T., Townsend P.K.: Higher dimensional resolution of dilatonic black hole singularities. Class. Quant. Grav. 12, 297 (1995) · Zbl 0817.53054 · doi:10.1088/0264-9381/12/2/004
[18] Gibbons G.W., Ida D., Shiromizu T.: Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions. Phys. Rev. D 66, 044010 (2002) · Zbl 1267.83057 · doi:10.1103/PhysRevD.66.044010
[19] Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and non-uniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89, 041101 (2002) · Zbl 1267.83057 · doi:10.1103/PhysRevLett.89.041101
[20] Harmark T.: Stationary and axisymmetric solutions of higher-dimensional general relativity. Phys. Rev. D 70, 124002 (2004) · doi:10.1103/PhysRevD.70.124002
[21] Harmark T., Olesen P.: On the structure of stationary and axisymmetric metrics. Phys. Rev. D 72, 124017 (2005) · doi:10.1103/PhysRevD.72.124017
[22] Hawking S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972) · doi:10.1007/BF01877517
[23] Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space-time. Cambridge University Press, Cambridge (1973) · Zbl 0265.53054
[24] Hollands S., Ishibashi A., Wald R.M.: A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699–722 (2007) · Zbl 1128.83028 · doi:10.1007/s00220-007-0216-4
[25] Hollands S., Yazadjiev S.: Uniqueness theorem for 5-dimensional black holes with two axial Killing fields. Commun. Math. Phys. 283, 749–768 (2008) · Zbl 1153.83024 · doi:10.1007/s00220-008-0516-3
[26] Hollands S., Yazadjiev S.: A Uniqueness theorem for 5-dimensional Einstein-Maxwell black holes. Class. Quant. Grav. 25, 095010 (2008) · Zbl 1140.83011 · doi:10.1088/0264-9381/25/9/095010
[27] Ionescu, A. D., Klainerman, S.: On the uniqueness of smooth, stationary black holes in vacuum. http://arxiv.org/abs/0711.0040v2[gr-qc] , 2008 · Zbl 1182.83005
[28] Isenberg J., Moncrief V.: Symmetries of cosmological Cauchy horizons with exceptional orbits. J. Math. Phys. 26, 1024–1027 (1985) · Zbl 0605.53044 · doi:10.1063/1.526587
[29] Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967) · doi:10.1103/PhysRev.164.1776
[30] Israel W.: Event horizons in electrovac vacuum space-times. Commun. Math. Phys. 8, 245–260 (1968) · doi:10.1007/BF01645859
[31] Kunduri H.K., Lucietti J., Reall H.S.: Near-horizon symmetries of extremal black holes. Class. Quant. Grav. 24, 4169 (2007) · Zbl 1205.83047 · doi:10.1088/0264-9381/24/16/012
[32] Kunduri, H.K., Lucietti, J.: A classification of near-horizon geometries of extremal vacuum black holes. http://arxiv.org/abs/0806.2051v2[hep-th] , 2008 · Zbl 1223.83032
[33] Mazur P.O.: Proof of uniqueness of the Kerr-Newman black hole solution. J. Phys. A 15, 3173–3180 (1982) · Zbl 1141.83304 · doi:10.1088/0305-4470/15/10/021
[34] Moncrief V., Isenberg J.: Symmetries of cosmological Cauchy horizons. Commun. Math. Phys. 89, 387–413 (1983) · Zbl 0523.53057 · doi:10.1007/BF01214662
[35] Moncrief V., Isenberg J.: Symmetries of higher dimensional black holes. Class. Quant. Grav. 25, 195015 (2008) · Zbl 1151.83357 · doi:10.1088/0264-9381/25/19/195015
[36] Müller zum Hagen H.: Characteristic initial value problem for hyperbolic systems of second order differential systems. Ann. Inst. Henri Poincaré 53, 159–216 (1990) · Zbl 0739.35039
[37] Myers R.C., Perry M.J.: Black holes in higher dimensional space-times. Annals Phys. 172, 304 (1986) · Zbl 0601.53081 · doi:10.1016/0003-4916(86)90186-7
[38] Nomizu K.: On local and global existence of Killing vector fields. Ann. Math. 72, 105–120 (1960) · Zbl 0093.35103 · doi:10.2307/1970148
[39] Pomeransky, A.A., Sen’kov, R.A.: Black ring with two angular momenta. http://arxiv.org/abs/hep-th/0612005 , 2006
[40] Racz I.: On further generalization of the rigidity theorem for spacetimes with a stationary event horizon or a compact Cauchy horizon. Class. Quant. Grav. 17, 153 (2000) · Zbl 0961.83003 · doi:10.1088/0264-9381/17/1/311
[41] Racz I., Wald R.M.: Extensions of spacetimes with Killing horizons. Class. Quant. Grav. 9, 2643–2656 (1992) · Zbl 0782.53061 · doi:10.1088/0264-9381/9/12/008
[42] Racz I., Wald R.M.: Global extensions of spacetimes describing asymptotic final states of black holes. Class. Quant. Grav. 13, 539–552 (1996) · Zbl 0866.53071 · doi:10.1088/0264-9381/13/3/017
[43] Reall H.S.: Higher dimensional black holes and supersymmetry. Phys. Rev. D 68, 024024 (2003) [Erratum-ibid. D 70, 089902 (2004)] · doi:10.1103/PhysRevD.68.024024
[44] Reall H.S.: Counting the microstates of a vacuum black ring. JHEP 0805, 013 (2008) · doi:10.1088/1126-6708/2008/05/013
[45] Rendall A.: Reduction of the characteristic initial value problem to the Cauchy problem and its application to the Einstein equations. Proc. Roy. Soc. Lond. A427, 211–239 (1990) · Zbl 0701.35149
[46] Robinson D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975) · doi:10.1103/PhysRevLett.34.905
[47] Rogatko M.: Uniqueness theorem of static degenerate and non-degenerate charged black holes in higher dimensions. Phys. Rev. D 67, 084025 (2003) · doi:10.1103/PhysRevD.67.084025
[48] Rogatko M.: Classification of static charged black holes in higher dimensions. Phys. Rev. D 73, 124027 (2006) · doi:10.1103/PhysRevD.73.124027
[49] Schmidt W.M.: Norm form equations. Ann. of Math. (2) 96, 526–551 (1972) · Zbl 0226.10024 · doi:10.2307/1970824
[50] Sudarsky D., Wald R.M.: Extrema of mass, stationarity, and staticity, and solutions to the Einstein Yang-Mills equations. Phys. Rev. D 46, 1453–1474 (1992) · doi:10.1103/PhysRevD.46.1453
[51] Walters P.: An Introduction to Ergodic Theory. Springer-Verlag, New York (1982) · Zbl 0475.28009
[52] Welch D.L.: On the smoothness of the horizons of multi-black hole solutions. Phys. Rev. D 52, 985 (1995) · doi:10.1103/PhysRevD.52.985
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.