×

On the non-linear stability of the cosmological region of the Schwarzschild-de Sitter spacetime. (English) Zbl 1526.83009

Summary: The non-linear stability of the sub-extremal Schwarzschild-de Sitter spacetime in the stationary region near the conformal boundary is analysed using a technique based on the extended conformal Einstein field equations and a conformal Gaussian gauge. This strategy relies on the observation that the Cosmological stationary region of this exact solution can be covered by a non-intersecting congruence of conformal geodesics. Thus, the future domain of dependence of suitable spacelike hypersurfaces in the Cosmological region of the spacetime can be expressed in terms of a conformal Gaussian gauge. A perturbative argument then allows to prove existence and stability results close to the conformal boundary and away from the asymptotic points where the Cosmological horizon intersects the conformal boundary. In particular, we show that small enough perturbations of initial data for the sub-extremal Schwarzschild-de Sitter spacetime give rise to a solution to the Einstein field equations which is regular at the conformal boundary. The analysis in this article can be regarded as a first step towards a stability argument for perturbation data on the Cosmological horizons.

MSC:

83C57 Black holes
30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
53C22 Geodesics in global differential geometry
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
35B35 Stability in context of PDEs
14J70 Hypersurfaces and algebraic geometry
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
83C25 Approximation procedures, weak fields in general relativity and gravitational theory

References:

[1] Beig, R.; Chruściel, P. T.; Schoen, R., KIDs are non-generic, Ann. Henri Poincaré, 6, 155 (2005) · Zbl 1145.83306 · doi:10.1007/s00023-005-0202-3
[2] Butscher, A.; Frauendiener, J.; Friedrich, H., Exploring the conformal constraint equations, The Conformal Structure of Spacetime: Geometry, Analysis, Numerics (Lecture Notes in Physics vol 195) (2002), Berlin: Springer, Berlin · Zbl 1043.83005
[3] Butscher, A., Perturbative solutions of the extended constraint equations in general relativity, Comm. Math. Phys., 272, 1 (2007) · Zbl 1220.83008 · doi:10.1007/s00220-007-0204-8
[4] Dafermos, M.; Rodnianski, I.; Ellwood, D.; Rodnianski, I.; Staffilani, G.; Wunsch, J., Lectures on black holes and linear waves, Evolution Equations (Clay Mathematics Proceedings vol 17), p 97 (2010), American Mathematical Society-Clay Mathematics Institute · Zbl 1300.83004
[5] Friedrich, H.; Flaherty, F. J., Some (con-)formal properties of Einstein’s field equations and consequences, Asymptotic Behaviour of Mass and Spacetime Geometry (Lecture Notes in Physics vol 202) (1984), Berlin: Springer, Berlin
[6] Friedrich, H., On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Comm. Math. Phys., 107, 587 (1986) · Zbl 0659.53056 · doi:10.1007/BF01205488
[7] Friedrich, H., On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Diff. Geom., 34, 275 (1991) · Zbl 0737.53070 · doi:10.4310/jdg/1214447211
[8] Friedrich, H., Einstein equations and conformal structure: existence of anti-de Sitter-type space-times, J. Geom. Phys., 17, 125 (1995) · Zbl 0840.53055 · doi:10.1016/0393-0440(94)00042-3
[9] Friedrich, H., Gravitational fields near space-like and null infinity, J. Geom. Phys., 24, 83 (1998) · Zbl 0896.53053 · doi:10.1016/S0393-0440(97)82168-7
[10] Friedrich, H., Conformal geodesics on vacuum spacetimes, Comm. Math. Phys., 235, 513 (2003) · Zbl 1040.53079 · doi:10.1007/s00220-003-0794-8
[11] Friedrich, H.; Schmidt, B., Conformal geodesics in general relativity, Proc. R. Soc. A, 414, 171 (1987) · Zbl 0629.53063
[12] García-Parrado, A.; Gasperín, E.; Valiente Kroon, J., Conformal geodesics in the Schwarzshild-de Sitter and Schwarzschild anti-de Sitter spacetimes, Class. Quantum Grav., 35 (2018)
[13] Gasperín, E.; Valiente Kroon, J. A., Perturbations of the asymptotic region of the Schwarzschild-de Sitter spacetime, Ann. Henri Poincaré, 18, 1519-91 (2017) · Zbl 1367.83015 · doi:10.1007/s00023-016-0544-z
[14] Griffiths, J. B.; Podolský, J., Exact Space-Times in Einstein’s General Relativity (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1184.83003
[15] Hilditch, D.; Valiente Kroon, J. A.; Zhao, P., Improved existence for the characteristic initial value problem with the conformal Einstein field equations, Gen. Relativ. Gravit., 52, 85 (2020) · Zbl 1470.83014 · doi:10.1007/s10714-020-02734-7
[16] Hintz, P., Non-linear stability of the Kerr-Newman-de Sitter family of charged black holes, Ann. PDE, 4, 11 (2018) · Zbl 1396.83018 · doi:10.1007/s40818-018-0047-y
[17] Hintz, P.; Vasy, A., The global non-linear stability of the Kerr-de Sitter family of black holes, Acta Math., 220, 1 (2018) · Zbl 1391.83061 · doi:10.4310/ACTA.2018.v220.n1.a1
[18] Kato, T., Quasi-Linear Equations of Evolution, With Applications to Partial Differential Equations (Lecture Notes in Mathematics vol 448), p 25 (1975), Berlin: Springer, Berlin · Zbl 0315.35077 · doi:10.1007/BFb0067080
[19] Lawden, D. F., Elliptic Functions and Applications (1989), Berlin: Springer, Berlin · Zbl 0689.33001
[20] Lübbe, C.; Valiente Kroon, J. A., On de Sitter-like and Minkowski-like spacetimes, Class. Quantum Grav., 26 (2009) · Zbl 1172.83008 · doi:10.1088/0264-9381/26/14/145012
[21] Luk, J., On the local existence for the characteristic initial value problem in general relativity, Int. Math. Res. Not., 20, 4625 (2012) · Zbl 1262.83011 · doi:10.1093/imrn/rnr201
[22] Minucci, M.; Valiente Kroon, J. A., A conformal approach to the stability of Einstein spaces with spatial sections of negative scalar curvature, Class. Quantum Grav., 38 (2021) · Zbl 1482.83018 · doi:10.1088/1361-6382/ac0356
[23] Schlue, V., Decay of linear waves on higher dimensional Schwarzschild black holes, Anal. PDE, 6, 515 (2013) · Zbl 1326.35382 · doi:10.2140/apde.2013.6.515
[24] Schlue, V., Global results for linear waves on expanding Kerr and Schwarzschild de Sitter cosmologies, Commun. Math. Phys., 334, 977 (2015) · Zbl 1310.83043 · doi:10.1007/s00220-014-2154-2
[25] Schlue, V., Decay of the Weyl curvature in expanding black hole cosmologies, Ann. PDE, 8, 9 (2022) · Zbl 1537.35339 · doi:10.1007/s40818-022-00125-6
[26] Stanciulescu, C1998Spherically symmetric solutions of the vacuum Einstein field equations with positive cosmological constantMaster ThesisUniversity of Vienna
[27] Valiente Kroon, J. A., Conformal Methods in General Relativity (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1368.83004
[28] Valiente Kroon, J. A.; Williams, J. L., A perturbative approach to the construction of initial data on compact manifolds, Pure Appl. Math. Q., 15, 785 (2020) · Zbl 1437.83018 · doi:10.4310/PAMQ.2019.v15.n3.a1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.