×

Higher fundamental forms of the conformal boundary of asymptotically de Sitter spacetimes. (English) Zbl 1516.83012

Summary: We provide a partial characterization of the conformal infinity of asymptotically de Sitter spacetimes by deriving constraints that relate the asymptotics of the stress-energy tensor with conformal geometric data. The latter is captured using recently defined objects, called higher conformal fundamental forms. For the boundary hypersurface, these generalize to higher order the trace-free part of the second form.

MSC:

83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
53C18 Conformal structures on manifolds
70H45 Constrained dynamics, Dirac’s theory of constraints

References:

[1] Ashtekar, A., Implications of a positive cosmological constant for general relativity, Rept. Prog. Phys., 80 (2017) · doi:10.1088/1361-6633/aa7bb1
[2] Ashtekar, A.; Bonga, B.; Kesavan, A., Asymptotics with a positive cosmological constant: I. Basic framework, Class. Quant. Grav., 32 (2014) · Zbl 1307.83011 · doi:10.1088/0264-9381/32/2/025004
[3] Fernández-Álvarez, F.; Senovilla, J. M M., Asymptotic Structure with a positive cosmological constant, Class. Quant. Grav., 39 (2022) · Zbl 1511.83010 · doi:10.1088/1361-6382/ac395b
[4] Riess, A. G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009 (1998) · doi:10.1086/300499
[5] Strominger, A., The dS/CFT correspondence, J. High Energy Phys., JHEP10(2001)034 (2001) · doi:10.1088/1126-6708/2001/10/034
[6] Penrose, R., Cycles of Time: An Extraordinary New View of the Universe (2010), London: Bodley Head, London · Zbl 1222.00011
[7] Friedrich, H., On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations, Proc. Roy. Soc. Lond. A, 375, 169 (1981) · Zbl 0454.58017 · doi:10.1098/rspa.1981.0045
[8] Friedrich, H., On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Diff. Geom., 34, 275 (1991) · Zbl 0737.53070 · doi:10.4310/jdg/1214447211
[9] Fefferman, C.; Graham, C. R., The Ambient Metric (2012), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1243.53004
[10] Starobinsky, A., Isotropization of arbitrary cosmological expansion given an effective cosmological constant, J. High Energy Phys. Lett., 37, 66-69 (1983)
[11] Tod, P., The equations of conformal cyclic cosmology, Gen. Relativ. Gravit., 47, 17 (2015) · Zbl 1317.83113 · doi:10.1007/s10714-015-1859-7
[12] Nurowski, P., Poincare-Einstein approach to Penrose’s conformal cyclic cosmology, Class. Quant. Grav., 38 (2021) · Zbl 1482.83140 · doi:10.1088/1361-6382/ac0237
[13] Curry, S.; Gover, A. R., An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, Asymptotic Analysis in General Relativity (2018), Cambridge: Cambridge University Press, Cambridge · Zbl 1416.83014
[14] Herfray, Y., Tractor geometry of asymptotically flat space-times, Ann. Henri Poincaré, 23, 3265-310 (2022) · Zbl 1501.83004 · doi:10.1007/s00023-022-01174-0
[15] Bonezzi, R.; Corradini, O.; Waldron, A., Local unit invariance, back-reacting tractors and the cosmological constant problem, J. Phys.: Conf. Ser., 343 (2012) · doi:10.1088/1742-6596/343/1/012128
[16] Čap, A.; Gover, A. R., A boundary-local mass cocycle and the mass of asymptotically hyperbolic manifolds (2021)
[17] Borthwick, J., Projective differential geometry and asymptotic analysis in General Relativity (2021)
[18] Lübbe, C.; Tod, P., An extension theorem for conformal gauge singularities, J. Math. Phys., 50 (2009) · Zbl 1304.53074 · doi:10.1063/1.3239509
[19] Blitz, S.; Gover, A. R.; Waldron, A., Conformal fundamental forms and the asymptotically Poincaré-Einstein condition (2021)
[20] Friedrich, H., Smooth non-zero rest-mass evolution across time-like infinity, Ann. Henri Poincaré, 16, 2215-38 (2015) · Zbl 1326.83086 · doi:10.1007/s00023-014-0368-7
[21] Graham, C. R., Dirichlet-to-Neumann map for Poincaré-Einstein metrics, Oberwolfach Rep., 2, 2200-3 (2005)
[22] Bailey, T. N.; Eastwood, M. G.; Gover, A. R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 24, 1191-217 (1994) · Zbl 0828.53012 · doi:10.1216/rmjm/1181072333
[23] Čap, A.; Gover, A. R., Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc., 354, 1511-48 (2002) · Zbl 0997.53016 · doi:10.1090/S0002-9947-01-02909-9
[24] Gover, A. R.; Peterson, L. J., Conformally invariant powers of the Laplacian, Q-curvature and tractor calculus, Comm. Math. Phys., 235, 339-78 (2003) · Zbl 1022.58014 · doi:10.1007/s00220-002-0790-4
[25] Gover, A. R., Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys., 60, 182-204 (2010) · Zbl 1194.53038 · doi:10.1016/j.geomphys.2009.09.016
[26] Gover, A. R., Conformal Dirichlet-Neumann maps and Poincaré-Einstein manifolds, Symmetry Integr. Geom.: Methods Appl., 3, 100 (2007) · Zbl 1145.53018 · doi:10.3842/SIGMA.2007.100
[27] Cherrier, P., Problèmes de Neumann nonlinéaires sur les variètès riemanniennes, J. Funct. Anal., 57, 154-206 (1984) · Zbl 0552.58032 · doi:10.1016/0022-1236(84)90094-6
[28] Branson, T.; Gover, A. R., Conformally invariant non-local operators, Pac. J. Appl. Math., 201, 19-60 (2001) · Zbl 1052.58026 · doi:10.2140/pjm.2001.201.19
[29] Gover, A. R.; Waldron, A., A calculus for conformal hypersurfaces and new higher Willmore energy functionals, Adv. Geom., 20, 29-60 (2020) · Zbl 1434.53062 · doi:10.1515/advgeom-2019-0016
[30] Valiente Kroon, J. A., Conformal Methods in General Relativity (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1368.83004
[31] Juhl, A., Families of Conformally Covariant Differential Operators, Q-Curvature and Holography (2009), Basel: Birkhäuser, Basel · Zbl 1177.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.