×

Counting eigenvalues of Schrödinger operators using the landscape function. (English) Zbl 07828346

Summary: We prove an upper and a lower bound on the rank of the spectral projections of the Schrödinger operator \(-\Delta +V\) in terms of the volume of the sublevel sets of an effective potential \(\frac{1}{u}\). Here, \(u\) is the ‘landscape function’ of G. David, M. Filoche, and S. Mayboroda [Adv. Math. 390 (2021), article no. 107946], namely a solution of \((-\Delta +V)u=1\) in \(\mathbb{R}^d\). We prove the result for non-negative potentials satisfying a Kato-type and a doubling condition, in all spatial dimensions, in infinite volume, and show that no coarse-graining is required. Our result yields in particular a necessary and sufficient condition for discreteness of the spectrum. In the case of nonnegative polynomial potentials, we prove that the spectrum is discrete if and only if no directional derivative vanishes identically.

MSC:

47B93 Operators arising in mathematical physics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964 Zbl 0171.38503 MR 167642 · Zbl 0171.38503
[2] D. Arnold, M. Filoche, S. Mayboroda, W. Wang, and S. Zhang, The landscape law for tight binding Hamiltonians. Comm. Math. Phys. 396 (2022), no. 3, 1339-1391 Zbl 1511.35109 MR 4507924 · Zbl 1511.35109 · doi:10.1007/s00220-022-04494-8
[3] D. N. Arnold, G. David, M. Filoche, D. Jerison, and S. Mayboroda, Localization of eigenfunctions via an effective potential. Comm. Partial Differential Equations 44 (2019), no. 11, 1186-1216 Zbl 1432.35061 MR 3995095 · Zbl 1432.35061 · doi:10.1080/03605302.2019.1626420
[4] S. Balasubramanian, Y. Liao, and V. Galitski, Many-body localization landscape. Phy. Rev. B 101 (2020), article no. 014201 · doi:10.1103/physrevb.101.014201
[5] F. Calogero, Upper and lower limits for the number of bound states in a given central potential. Comm. Math. Phys. 1 (1965), 80-88 Zbl 0128.21907 MR 181250 · Zbl 0128.21907 · doi:10.1007/bf01649591
[6] I. Chenn, W. Wang, and S. Zhang, Approximating the ground state eigenvalue via the effective potential. Nonlinearity 35 (2022), no. 6, 3004-3035 Zbl 1491.82011 MR 4443926 · Zbl 1491.82011 · doi:10.1088/1361-6544/ac692a
[7] M. Christ, On the @ equation in weighted L 2 norms in C 1 . J. Geom. Anal. 1 (1991), no. 3, 193-230 Zbl 0737.35011 MR 1120680 · Zbl 0737.35011 · doi:10.1007/BF02921303
[8] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. of Math. (2) 106 (1977), no. 1, 93-100 Zbl 0362.47006 MR 473576 · Zbl 0362.47006 · doi:10.2307/1971160
[9] B. Davey, J. Hill, and S. Mayboroda, Fundamental matrices and Green matrices for non-homogeneous elliptic systems. Publ. Mat. 62 (2018), no. 2, 537-614 Zbl 1400.35098 MR 3815288 · Zbl 1400.35098 · doi:10.5565/PUBLMAT6221807
[10] G. David, M. Filoche, and S. Mayboroda, The landscape law for the integrated density of states. Adv. Math. 390 (2021), article no. 107946 Zbl 1479.35267 MR 4298594 · Zbl 1479.35267 · doi:10.1016/j.aim.2021.107946
[11] E. B. Davies, Spectral theory and differential operators. Cambridge Stud. Adv. Math 42, Cambridge University Press, Cambridge, 1995 Zbl 0893.47004 MR 1349825 · Zbl 0893.47004 · doi:10.1017/CBO9780511623721
[12] C. L. Fefferman, The uncertainty principle. Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129-206 Zbl 0526.35080 MR 707957 · Zbl 0526.35080 · doi:10.1090/S0273-0979-1983-15154-6
[13] M. Filoche, S. Mayboroda, and T. Tao, The effective potential of an M -matrix. J. Math. Phys. 62 (2021), no. 4, article no. 041902, 15 Zbl 1462.81088 MR 4246780 · Zbl 1462.81088 · doi:10.1063/5.0042629
[14] R. L. Frank, Cwikel’s theorem and the CLR inequality. J. Spectr. Theory 4 (2014), no. 1, 1-21 Zbl 1295.35347 MR 3181383 · Zbl 1295.35347 · doi:10.4171/JST/59
[15] R. L. Frank, A. Laptev, and T. Weidl, Schrödinger operators: eigenvalues and Lieb-Thirring inequalities. Cambridge Stud. Adv. Math 200, Cambridge University Press, Cam-bridge, 2023 Zbl 07595814 MR 4496335 · Zbl 1536.35001 · doi:10.1017/9781009218436
[16] A. Grigor’yan and N. Nadirashvili, Negative eigenvalues of two-dimensional Schrödinger operators. Arch. Ration. Mech. Anal. 217 (2015), no. 3, 975-1028 Zbl 1319.35128 MR 3356993 · Zbl 1319.35128 · doi:10.1007/s00205-015-0848-z
[17] H. V. Ha and T. T. Nguyen, Łojasiewicz gradient inequalities for polynomial functions and some applications. J. Math. Anal. Appl. 509 (2022), no. 1, article no. 125950 Zbl 1516.26010 MR 4358608 · Zbl 1516.26010 · doi:10.1016/j.jmaa.2021.125950
[18] V. Hoang, D. Hundertmark, J. Richter, and S. Vugalter, Quantitative bounds versus exis-tence of weakly coupled bound states for Schrödinger type operators. Ann. Henri Poincaré 24 (2023), no. 3, 783-842 Zbl 1511.35247 MR 4562137 · Zbl 1511.35247 · doi:10.1007/s00023-022-01228-3
[19] D. Hundertmark, P. Kunstmann, T. Ried, and S. Vugalter, Cwikel’s bound reloaded. Invent. Math. 231 (2023), no. 1, 111-167 Zbl 1510.35193 MR 4526822 · Zbl 1510.35193 · doi:10.1007/s00222-022-01144-7
[20] V. Ivrii, 100 years of Weyl’s law. Bull. Math. Sci. 6 (2016), no. 3, 379-452 Zbl 1358.35075 MR 3556544 · Zbl 1358.35075 · doi:10.1007/s13373-016-0089-y
[21] A. Laptev, The negative spectrum of the class of two-dimensional Schrödinger operators with potentials that depend on the radius. Funktsional. Anal. i Prilozhen. 34 (2000), no. 4, 85-87; English transl., Funct. Anal. Appl. 34 (2000), no. 4, 305-307 Zbl 0972.35079 MR 1819649 · Zbl 0972.35079 · doi:10.1023/A:1004169726452
[22] A. Laptev and Y. Netrusov, On the negative eigenvalues of a class of Schrödinger opera-tors. In Differential operators and spectral theory, pp. 173-186, Amer. Math. Soc. Transl. Ser. 2 189, American Mathematical Society, Providence, RI, 1999 Zbl 0941.35055 MR 1730512 · Zbl 0941.35055 · doi:10.1090/trans2/189/14
[23] A. Laptev, L. Read, and L. Schimmer, Calogero type bounds in two dimensions. Arch. Ration. Mech. Anal. 245 (2022), no. 3, 1491-1505 Zbl 1495.35135 MR 4467323 · Zbl 1495.35135 · doi:10.1007/s00205-022-01811-2
[24] E. Lieb, Bounds on the eigenvalues of the Laplace and Schroedinger operators. Bull. Amer. Math. Soc. 82 (1976), no. 5, 751-753 Zbl 0329.35018 MR 407909 · Zbl 0329.35018 · doi:10.1090/S0002-9904-1976-14149-3
[25] E. H. Lieb, and M. Loss, Analysis. Second edn., Grad. Stud. Math. 14, American Mathe-matical Society, Providence, RI, 2001 Zbl 0966.26002 MR 1817225 · Zbl 0966.26002 · doi:10.1090/gsm/014
[26] E. H. Lieb and W. E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In Essays Honor Valentine Bargmann, pp. 269-303, Stud. Math. Phys., Princeton University Press, Prince-ton, NJ, 1976 Zbl 0342.35044 · Zbl 0342.35044
[27] V. Liskevich and I. I. Skrypnik, Harnack inequality and continuity of solutions to elliptic equations with nonstandard growth conditions and lower order terms. Ann. Mat. Pura Appl. (4) 189 (2010), no. 2, 335-356 Zbl 1187.35073 MR 2602154 · Zbl 1187.35073 · doi:10.1007/s10231-009-0111-z
[28] A. Mohamed, P. Lévy-Bruhl, and J. Nourrigat, Étude spectrale d’opérateurs liés à des représentations de groupes nilpotents. J. Funct. Anal. 113 (1993), no. 1, 65-93 Zbl 0777.35047 MR 1214898 · Zbl 0777.35047 · doi:10.1006/jfan.1993.1047
[29] A. Mohamed and J. Nourrigat, Encadrement du N. / pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique. J. Math. Pures Appl. (9) 70 (1991), no. 1, 87-99 Zbl 0725.35068 MR 1091921
[30] M. Otelbaev, Bounds for eigenvalues of singular differential operators. Mat. Zametki 20 (1976), no. 6, 859-867; English transl., Math. Notes 20 (1976), 1038-1042 Zbl 0354.34022 MR 435503 · Zbl 0343.34017 · doi:10.1007/bf01095199
[31] M. Otelbaev, Imbedding theorems for spaces with a weight and their application to the study of the spectrum of a Schrödinger operator. Trudy Mat. Inst. Steklov. 150 (1979), 265-305, 323-324 Zbl 0416.46019 MR 544014 · Zbl 0416.46019
[32] L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960), 286-292 (1960) Zbl 0099.08402 MR 117419 · Zbl 0099.08402 · doi:10.1007/BF00252910
[33] B. Poggi, Applications of the landscape function for Schrödinger operators with singular potentials and irregular magnetic fields. 2021, arXiv:2107.14103
[34] B. Poggi and S. Mayboroda, Exponential decay of fundamental solutions to Schrödinger operators and the landscape function. Spring Western Virtual Sectional Meeting, American Mathematical Society, 2021 · Zbl 1432.35065 · doi:10.1090/tran/7817
[35] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of opera-tors. Academic Press, New York etc., 1978 Zbl 0401.47001 MR 493421 · Zbl 0401.47001
[36] D. Robert, Comportement asymptotique des valeurs propres d’opérateurs du type Schrö-dinger à potentiel “dégénéré”. J. Math. Pures Appl. (9) 61 (1982), no. 3, 275-300 (1983) Zbl 0511.35069 MR 690397 · Zbl 0511.35069
[37] G. V. Rozenblyum, Estimates of the spectrum of the Schrödinger operator. In Problems of mathematical analysis, No. 5: Linear and nonlinear differential equations, differential operators, pp. 152-166 Leningrad University, Leningrad, 1975; English translation, J. Sov. Math. 10 (1978), no. 6, 934-944. Zbl 0432.35062 MR 0410068 · Zbl 0432.35062 · doi:10.1007/bf01669640
[38] G. V. Rozenblyum, Distribution of the discrete spectrum of singular differential operators. Izv. Vysš. Učebn. Zaved. Matematika (1976), no. 1, 75-86 (in Russian) MR 0430557 · Zbl 0342.35045
[39] E. Shargorodsky, On negative eigenvalues of two-dimensional Schrödinger operators. Proc. Lond. Math. Soc. (3) 108 (2014), no. 2, 441-483 Zbl 1327.35274 MR 3166359 · Zbl 1327.35274 · doi:10.1112/plms/pdt036
[40] Z. Shen, Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields. Trans. Amer. Math. Soc. 348 (1996), no. 11, 4465-4488 Zbl 0866.35088 MR 1370650 · Zbl 0866.35088 · doi:10.1090/S0002-9947-96-01709-6
[41] Z. Shen, On bounds of N. / for a magnetic Schrödinger operator. Duke Math. J. 94 (1998), no. 3, 479-507 Zbl 0948.35088 MR 1639527 · Zbl 0948.35088 · doi:10.1215/S0012-7094-98-09420-0
[42] Z. Shen, On fundamental solutions of generalized Schrödinger operators. J. Funct. Anal. 167 (1999), no. 2, 521-564 Zbl 0936.35051 MR 1716207 · Zbl 0936.35051 · doi:10.1006/jfan.1999.3455
[43] Z. W. Shen, L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513-546 Zbl 0818.35021 MR 1343560 · Zbl 0818.35021 · doi:10.5802/aif.1463
[44] B. Simon, Nonclassical eigenvalue asymptotics. J. Funct. Anal. 53 (1983), no. 1, 84-98 Zbl 0529.35064 MR 715548 · Zbl 0529.35064 · doi:10.1016/0022-1236(83)90047-2
[45] B. Simon, Some quantum operators with discrete spectrum but classically continuous spectrum. Ann. Physics 146 (1983), no. 1, 209-220 Zbl 0547.35039 · Zbl 0547.35039 · doi:10.1016/0003-4916(83)90057-X
[46] H. F. Smith, Parametrix construction for a class of subelliptic differential operators. Duke Math. J. 63 (1991), no. 2, 343-354 Zbl 0777.35002 MR 1115111 · Zbl 0777.35002 · doi:10.1215/S0012-7094-91-06314-3
[47] S. Steinerberger, Localization of quantum states and landscape functions. Proc. Amer. Math. Soc. 145 (2017), no. 7, 2895-2907 Zbl 1365.35098 MR 3637939 · Zbl 1365.35098 · doi:10.1090/proc/13343
[48] S. Steinerberger, Regularized potentials of Schrödinger operators and a local landscape function. Comm. Partial Differential Equations 46 (2021), no. 7, 1262-1279 Zbl 1487.35200 MR 4279965 · Zbl 1487.35200 · doi:10.1080/03605302.2020.1871366
[49] W. Wang and S. Zhang, The exponential decay of eigenfunctions for tight-binding Hamil-tonians via landscape and dual landscape functions. Ann. Henri Poincaré 22 (2021), no. 5, 1429-1457 Zbl 1462.81092 MR 4250739 · Zbl 1462.81092 · doi:10.1007/s00023-020-00986-2
[50] H. Weyl, Über die asymptotische Verteilung der Eigenwerte. Gött. Nachr (1911), 110-117 JFM 43.0435.04 · JFM 42.0432.03
[51] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differ-entialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71 (1912), no. 4, 441-479 JFM 43.0436.01 MR 1511670 · JFM 43.0436.01 · doi:10.1007/BF01456804
[52] H. Weyl, Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung. J. Reine Angew. Math. 141 (1912), 1-11 JFM 43.0948.03 MR 1580843 · JFM 43.0948.03 · doi:10.1515/crll.1912.141.1
[53] H. Weyl, Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralge-setze. J. Reine Angew. Math. 143 (1913), 177-202 JFM 44.1053.02 MR 1580880 · JFM 44.1053.02 · doi:10.1515/crll.1913.143.177
[54] J. Zhong, Harmonic analysis for some Schroedinger type operators. Ph.D. thesis, Prince-ton, NJ, 1993 MR 2689454
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.