×

On the representation of three-dimensional elasticity solutions with the aid of complex valued functions. (English) Zbl 0687.73008

Summary: In this paper the representation of three-dimensional displacement fields in linear elasticity in terms of six complex valued functions is considered. The representation includes the complex Muskhelishvili formulation for plane strain as a special case. The completeness of the complex representation for regular solutions is shown and a relationship to the Neuber/Papkovich solution is given.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
Full Text: DOI

References:

[1] R. Piltner: The use of complex valued functions for the solution of three-dimensional elasticity problems. J. Elasticity 18 (1987) 191-225. · Zbl 0619.73004 · doi:10.1007/BF00044194
[2] N.I. Muskhelishvili: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1963).
[3] M.E. Gurtin: The linear theory of elasticity. In: S. Flügge (ed.), Handbuch der Physik, Vol. VIa/2 (ed. by C. Truesdell), Springer-Verlag, Berlin (1972) pp. 1-295.
[4] R.A. Eubanks and E. Sternberg: On the completeness of the Boussinesq-Papkovich stress functions. J. Rat. Mech. Anal. 5 (1956) 735-746. · Zbl 0072.19002
[5] M. Stippes: Completeness of the Papkovich potentials. Q. Appl. Math. 26 (1969) 477-483. · Zbl 0194.25802
[6] T. Tran Cong and G.P. Steven: On the representation of elastic displacement fields in terms of three harmonic functions. J. Elasticity 9 (1979) 325-333. · Zbl 0411.73012 · doi:10.1007/BF00041103
[7] K. Hackl and U. Zastrow: On the existence, uniqueness and completeness of displacement and stress functions in linear elasticity. J. Elasticity 19 (1988) 3-23. · Zbl 0677.73006 · doi:10.1007/BF00041692
[8] R.F. Millar: On the completeness of the Papkovich potentials. Q. Appl. Math. 41 (1984) 385-393. · Zbl 0567.73031
[9] D.E. Carlson: A note on the Beltrami stress functions. Z. angew. Math. Mech. 47 (1967) 206-207. · doi:10.1002/zamm.19670470313
[10] R.D. Mindlin: Note on the Galerkin and Papkovich stress functions. Bull. Am. Math. Soc. 42 (1936) 373-376. · JFM 62.0939.02 · doi:10.1090/S0002-9904-1936-06304-4
[11] U. Zastrow: Zur Lösung von Halbraumproblemen nach der Spannungsfunktionenmethode ? neue und alte Ansätze für Verschiebungs-und Spannungsfunktionen in der räumlichen Elastizitätstheorie (habilitation thesis). VDI-Verlag, Düsseldorf (1986).
[12] P.F. Papkovich: Solution générale des équations différentielles fondamentales d’élasticité, exprimée par trois fonctions harmoniques. C. R. Acad. Sci. Paris 195 (1932) 513-515.
[13] H. Neuber: Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel. Z. angew. Math. Mech. 14 (1934) 203-212. · JFM 60.1351.02 · doi:10.1002/zamm.19340140404
[14] H. Neuber: Kerbspannungslehre. Springer-Verlag, Berlin (1958).
[15] E.T. Whittaker and G. N. Watson: A Course of Modern Analysis. Cambridge University Press (1927). · JFM 53.0180.04
[16] E.T. Copson: Partial Differential Equations. Cambridge University Press (1974).
[17] E.T. Whittaker: On the partial differential equations of mathematical physics. Math. Ann. 57 (1903) 333-355. · JFM 34.0827.01 · doi:10.1007/BF01444290
[18] H. Bateman: Partial Differential Equations of Mathematical Physics. Cambridge University Press (1932). · Zbl 0004.21403
[19] E.W. Hobson: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press (1931).
[20] E.T. Whittaker: On Lamé’s differential equation and ellipsoidal harmonics. Proc. London Math. Soc., 2. Ser. 14 (1915) 260-268. · JFM 45.0493.01
[21] G. Temple. Whittaker’s work on the integral representation of harmonic functions. Proc. Edinburgh Math. Soc. (1958) 11-24. · Zbl 0083.24511
[22] G.B. Jeffrey: On spheroidal harmonics and allied functions. Proc. Edinburgh Math. Soc. 33 (1915) 118-121. · doi:10.1017/S001309150000242X
[23] G.B. Jeffrey: Bipolar and toroidal harmonics. Proc. Edinburgh Math. Soc. 34 (1916) 102-108. · JFM 46.0587.02 · doi:10.1017/S0013091500037494
[24] G.B. Jeffrey: Transformations of axes for Whittaker’s solution of Laplace’s equations. Proc. Edinburgh Math. Soc. 35 (1917) 32-37. · JFM 46.0748.04 · doi:10.1017/S0013091500029667
[25] S. Bergmann: Zur Theorie der ein-und mehrwertigen harmonischen Funktionen des dreidimensionalen Raumes. Math. Z. 24 (1926) 641-669. · JFM 52.0487.03 · doi:10.1007/BF01216803
[26] S. Bergmann: Zur Theorie der algebraischen Potentialfunktionen des dreidimensionalen Raumes (part I, II). Math. Ann. 99 (1928) 629-659 and 101 (1929) 534-558. · JFM 54.0514.02 · doi:10.1007/BF01459118
[27] S. Bergmann: A class of harmonic functions in three variables and their properties. Trans. Amer. Math. Soc. 59 (1946) 216-247. · Zbl 0063.00319 · doi:10.1090/S0002-9947-1946-0015625-7
[28] E. Kreyszig: On singularities of solutions of partial differential equations in three variables. Arch. Rat. Mech. Anal. 2 (1958/59) 151-159. · Zbl 0105.07105 · doi:10.1007/BF00277925
[29] E. Kreyszig: On regular and singular harmonic functions of three variables. Arch. Rat. Mech. Anal. 4 (1959/60) 352-370. · Zbl 0097.05902 · doi:10.1007/BF00281396
[30] Ph.M. Morse and H. Feshbach: Methods of Theoretical Physics, Part II. McGraw-Hill, New York (1953) pp. 1252-1309.
[31] H.G. Hahn: Elastizitätstheorie. Teubner-Verlag, Stuttgart (1985).
[32] H. Leipholz: Einführung in die Elastizitätstheorie. Braun-Verlag, Karlsruhe (1968). · Zbl 0179.53901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.