×

Neutrino spin and dispersion in magnetized medium. (English) Zbl 1375.81243

Summary: The full energy shift of a massive Dirac neutrino in magnetized electron-positron plasma was investigated using the Matsubara imaginary time and real time formalisms. The neutrino dispersion in the magnetized medium was analyzed as a function of the neutrino spin and mass. It was shown that in a superstrong magnetic field the CP-symmetric plasma contribution to the neutrino energy greatly exceeds the analogous correction in the field-free case. The contribution of plasma to the anomalous magnetic moment of a neutrino was obtained.

MSC:

81V15 Weak interaction in quantum theory
82D40 Statistical mechanics of magnetic materials
82D10 Statistical mechanics of plasmas

References:

[1] Bilenky, S., Introduction to the Physics of Massive and Mixed Neutrinos. Introduction to the Physics of Massive and Mixed Neutrinos, Lecture Notes in Physics, 817 (2010), New York, NY, USA: Springer, New York, NY, USA · Zbl 1206.81005
[2] Broggini, C.; Giunti, C.; Studenikin, A., Electromagnetic properties of neutrinos, Advances in High Energy Physics, 2012 (2012) · Zbl 1263.81275 · doi:10.1155/2012/459526
[3] Mohapatra, R. N.; Pal, P. B., Massive Neutrinos in Physics and Astrophysics. Massive Neutrinos in Physics and Astrophysics, Lecture Notes in Physics, 72 (2004), River Edge, NJ, USA: World Scientific, River Edge, NJ, USA
[4] Sahu, S.; Hwang, W.-Y. P., Effective potential for highly relativistic neutrinos in a weakly magnetized medium and their oscillation, The European Physical Journal C, 58, 4, 609-615 (2008) · doi:10.1140/epjc/s10052-008-0797-x
[5] Giunti, C.; Kim, C. W., Fundamentals of Neutrino Physics and Astrophysics (2007), Oxford, UK: Oxford University Press, Oxford, UK
[6] Raffelt, G. G., Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles (1996), Chicago, Ill, USA: University of Chicago Press, Chicago, Ill, USA
[7] Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M., The role of sterile neutrinos in cosmology and astrophysics, Annual Review of Nuclear and Particle Science, 59, 1, 359-379 (2009) · doi:10.1146/annurev.nucl.010909.083654
[8] Ando, S.; Kusenko, A., Interactions of keV sterile neutrinos with matter, Physical Review D, 81, 11 (2010) · doi:10.1103/physrevd.81.113006
[9] Gvozdev, A. A.; Mikheev, N. V.; Vassilevskaya, L. A., The magnetic catalysis of the radiative decay of a massive neutrino in the standard model with lepton mixing, Physics Letters B, 289, 1-2, 103-108 (1992)
[10] Skobelev, V. V., Decay of massive neutrinos in a strong magnetic field, Journal of Experimental and Theoretical Physics, 108, 1, 3-13 (1995)
[11] Zhukovsky, V. C.; Eminov, P. A.; Grigoruk, A. E., Radiative decay of a massive neutrino in the Weinberg-Salam model with mixing in a constant uniform magnetic field, Modern Physics Letters A, 11, 39-40, 3119-3126 (1996) · doi:10.1142/s0217732396003106
[12] Ternov, A. I.; Eminov, P. A., Neutrino radiative decay in external field and medium, Physics of Particles and Nuclei, 45, 2, 397-408 (2014) · doi:10.1134/S1063779614020051
[13] Ternov, A. I.; Eminov, P. A., Decay of a massive neutrino in magnetized electron gas, Physical Review D, 87, 11 (2013) · doi:10.1103/physrevd.87.113001
[14] Dobrynina, A. A.; Mikheev, N. V.; Raffelt, G. G., Radiative decay of keV-mass sterile neutrinos in a strongly magnetized plasma, Physical Review D, 90, 11 (2014) · doi:10.1103/physrevd.90.113015
[15] Harding, A. K.; Lai, D., Physics of strongly magnetized neutron stars, Reports on Progress in Physics, 69, 9 (2006) · doi:10.1088/0034-4885/69/9/r03
[16] Grasso, D.; Rubinstein, H. R., Magnetic fields in the early Universe, Physics Report, 348, 3, 163-266 (2001) · doi:10.1016/s0370-1573(00)00110-1
[17] Dolgov, A. D., Neutrinos in cosmology, Physics Report, 370, 4-5, 333-535 (2002) · doi:10.1016/s0370-1573(02)00139-4
[18] Drexlin, G.; Hannen, V.; Mertens, S.; Weinheimer, C., Current direct neutrino mass experiments, Advances in High Energy Physics, 2013 (2013) · doi:10.1155/2013/293986
[19] Wolfenstein, L., Neutrino oscillations in matter, Physical Review D, 17, 9, 2369-2374 (1978) · doi:10.1103/physrevd.17.2369
[20] Mikheyev, S. P.; Smirnov, A. Y., Resonant amplification of \(ν\) oscillations in matter and solar-neutrino spectroscopy, Il Nuovo Cimento C, 9, 1, 17-26 (1986) · doi:10.1007/bf02508049
[21] Giunti, C.; Studenikin, A., Neutrino electromagnetic interactions: a window to new physics, Reviews of Modern Physics, 87, 2, 531-591 (2015) · doi:10.1103/revmodphys.87.531
[22] Haxton, W. C.; Hamish Robertson, R. G.; Serenelli, A. M., Solar neutrinos: status and prospects, Annual Review of Astronomy and Astrophysics, 51, 21-61 (2013) · doi:10.1146/annurev-astro-081811-125539
[23] Capozzi, F.; Fogli, G. L.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A., Status of three-neutrino oscillation parameters, circa 2013, Physical Review D, 89 (2014) · Zbl 1336.81100 · doi:10.1103/physrevd.89.093018
[24] Nötzold, D.; Raffelt, G., Neutrono dispersion at finite temperature and density, Nuclear Physics B, 307, 4, 924-936 (1988) · doi:10.1016/0550-3213(88)90113-7
[25] Oraevsky, V. N.; Semikoz, V. B.; Smorodinsky, Ya. A., Electrodynamics of neutrino in a medium, Physics of Elementary Particles and Atomic Nuclei, 25, 2, 129-156 (1994)
[26] D’Olivo, J. C.; Nieves, J. F.; Pal, P. B., Electromagnetic properties of neutrinos in a background of electrons, Physical Review D, 40, 11, 3679-3687 (1989) · doi:10.1103/PhysRevD.40.3679
[27] Giunti, C.; Kim, C. W.; Lam, W. P., Radiative decay and magnetic moment of neutrinos in matter, Physical Review D, 43, 1, 164-169 (1991) · doi:10.1103/physrevd.43.164
[28] Elmfors, P.; Grasso, D.; Raffelt, G., Neutrino dispersion in magnetized media and spin oscillations in the early Universe, Nuclear Physics B, 479, 1-2, 3-24 (1996) · doi:10.1016/0550-3213(96)00431-2
[29] Erdas, A.; Kim, C. W.; Lee, T. H., Neutrino self-energy and dispersion in a medium with a magnetic field, Physical Review D, 58, 8 (1998) · doi:10.1103/PhysRevD.58.085016
[30] Elizalde, E.; Ferrer, E. J.; de la Incera, V., Neutrino propagation in a strongly magnetized medium, Physical Review D, 70, 4 (2004) · Zbl 1065.81612 · doi:10.1103/physrevd.70.043012
[31] Kuznetsov, A. V.; Mikheev, N. V.; Raffelt, G. G.; Vassilevskaya, L. A., Neutrino dispersion in external magnetic fields, Physical Review D, 73, 2 (2006) · doi:10.1103/PhysRevD.73.023001
[32] García, A. B.; Bhattacharya, K.; Sahu, S., The neutrino self-energy in a magnetized medium, Modern Physics Letters A, 23, 32, 2771-2786 (2008) · doi:10.1142/S0217732308028442
[33] Erdas, A., Neutrino self-energy in an external magnetic field, Physical Review D, 80, 11 (2009) · doi:10.1103/physrevd.80.113004
[34] Ritus, V. I., Electron mass shift in intense field, Proceedings of the Lebedev Physical Institute. Proceedings of the Lebedev Physical Institute, Problems of Quantum Electrodynamics of Intense Field, 168, 52-120 (1986), Moscow, Russia: Nauka, Moscow, Russia
[35] Matsubara, T., A new approach to quantum-statistical mechanics, Progress of Theoretical Physics, 14, 4, 351-378 (1955) · Zbl 0067.18802 · doi:10.1143/ptp.14.351
[36] Fradkin, E. S., The method of Green’s functions in quantum field theory and quantum statistics, Proceedings of the P.N. Lebedev Physical Institute, 29, 7-138 (1965)
[37] Schwinger, J., On gauge invariance and vacuum polarization, Physical Review D, 82, 5, 664-679 (1951) · Zbl 0043.42201
[38] Ternov, I. M.; Zhukovskii, V. Ch.; Borisov, A. V., Quantum Processes in a Strong External Field, Moscow, Russia: Moscow State University Press, Moscow, Russia
[39] Borisov, A. V.; Vshivtsev, A. S.; Zhukovskii, V. Ch.; Eminov, P. A., Photons and leptons in external fields at finite temperature and density, Uspekhi Fizicheskikh Nauk, 167, 3, 241-267 (1997) · doi:10.3367/UFNr.0167.199703a.0241
[40] Zhukovskii, V. C.; Kurilin, A. V.; Éminov, P. A., Temperature shift of neutrino mass in a magnetic field, Soviet Physics Journal, 30, 12, 1001-1004 (1987) · doi:10.1007/bf00897906
[41] Erdas, A.; Feldman, G., Magnetic field effects on lagrangians and neutrino self-energies in the Salam-Weinberg theory in arbitrary gauges, Nuclear Physics B, 343, 3, 597-621 (1990) · doi:10.1016/0550-3213(90)90582-x
[42] Zhukovskii, V. Ch.; Shoniya, T. L.; Eminov, P. A., Energy shift and anomalous magnetic moment of the neutrino in a constant magnetic field at finite temperature and density, Journal of Experimental and Theoretical Physics, 104, 4, 3269-3279 (1993)
[43] Borisov, A.; Zhukovskii, V. C.; Kurilin, A.; Ternov, A., Radiative corrections to neutrino mass in external electromagnetic field, Physics of Atomic Nuclei, 41, 3, 743-748 (1985)
[44] Lee, B. W.; Shrock, R. E., Natural suppression of symmetry violation in gauge theories: muon- and electron-lepton-number nonconservation, Physical Review D, 16, 5, 1444-1473 (1977) · doi:10.1103/physrevd.16.1444
[45] Fujikawa, K.; Shrock, R. E., Magnetic moment of a massive neutrino and neutrino-spin rotation, Physical Review Letters, 45, 12, 963-966 (1980) · doi:10.1103/physrevlett.45.963
[46] Zhukovskii, V. Ch.; Midodashvili, P. G.; Eminov, P. A., The mass shift of the electron in a magnetic field at finite temperature, Moscow University Physics Bulletin, 26, 3, 12-15 (1985)
[47] Zhukovskii, V. Ch.; Kurilin, A. I.; Midodashvili, P. G.; Eminov, P. A., The energy shift of massive neutrino in a magnetic field at finite temperature, Moscow University Physics Bulletin, 3, 81-84 (1988)
[48] Anikin, R. A.; Mikheev, N. V.; Narynskaya, E. N., Magnetic moment of the neutrino induced by magnetized plasma, Journal of Experimental and Theoretical Physics, 137, 6, 1115-1119 (2010)
[49] Eminov, P. A.; Grishina, V. Y., The radiative energy shift of the neutrino in magnetized electron-positron gas, Moscow University Physics Bulletin, 3, 62-63 (1997)
[50] Ternov, I. M.; Zhukovskii, V. Ch.; Eminov, P. A.; Midodashvili, P. G., Anomalous magnetic moment of the electron at finite temperature, Physics of Atomic Nuclei, 43, 764-768 (1986)
[51] Zhukovskii, V. Ch.; Shoniya, T. L.; Eminov, P. A., Energy shift of the electron in a constant magnetic field at finite density of the medium, Yadernaya Fizika (Physics of Atomic Nuclei), 57, 1437-1442 (1994)
[52] Sokolov, A. A.; Ternov, I. M., Relativistic Electron (1983), Moscow, Russia: Nauka, Moscow, Russia
[53] Sokolov, A. A.; Ternov, I. M., Radiation from Relativistic Electrons (1986), New York, NY, USA: American Institute of Physics, New York, NY, USA
[54] Rabi, I. I., Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie, Zeitschrift für Physik, 49, 7, 507-511 (1928) · JFM 54.0975.01 · doi:10.1007/bf01333634
[55] Landau, L., Diamagnetismus der Metalle, Zeitschrift für Physik, 64, 9-10, 629-637 (1930) · JFM 56.1318.10 · doi:10.1007/bf01397213
[56] Sahu, S.; D’Olivo, J. C., Can there be neutrino oscillations in a gamma-ray burst fireball?, Physical Review D, 71 (2005) · doi:10.1103/physrevd.71.047303
[57] Shabad, A. E., Polarization of the vacuum and a quantum relativistic gas in an external field, Polarization Effects in External Gauge Fields. Polarization Effects in External Gauge Fields, Proceedings of P. N. Lebedev Physics Institute, 192 (1988), Moscow, Russia: Nauka, Moscow, Russia
[58] Belvedere, R.; Pugliese, D.; Rueda, J. A.; Ruffini, R.; Xue, S.-S., Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions, Nuclear Physics A, 883, 1-24 (2012) · doi:10.1016/j.nuclphysa.2012.02.018
[59] Shabad, A. E.; Ginzburg, V. L., Polarization of the Vacuum and a Quantum Relativistic Gas in an External Field (1991), New York, NY, USA: Nova Science, New York, NY, USA
[60] Thompson, C.; Duncan, R. C., The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-ray, and alfvén wave emission, Astrophysical Journal, 473, 1, 322-342 (1996) · doi:10.1086/178147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.