×

Faddeev invariants for central simple algebras over rational function fields. (English) Zbl 1306.11033

Fix a prime number \(p\) and let \(k\) be a field of characteristic different from \(p\). Let \(X\) be a regular curve over \(k\) with function field \(k(X)\). For a Brauer class \(\alpha\) in the \(p\)-primary torsion part of the Brauer group \(\mathrm{Br}(k(X))\), the Faddeev index \(F(\alpha)\) is defined as the maximum of the indices of Brauer classes \(\beta\in\mathrm{Br}(k(X))\{p\}\) which have the same residues as \(\alpha\) at all points of \(X\) B. È. Kunyavskiĭ et al. [Trans. Am. Math. Soc. 358, No. 6, 2579–2610 (2006; Zbl 1101.16013)].
In the paper under review, the author first studies the Faddeev index over the rational function field \(k(t)\) and shows that if the ramification locus of \(\alpha\) on \(\mathbb{A}^1\) is composed of \(n\) rational points, then \(F(\alpha)\leq p^{[\frac{n+1}{2}]}\). This upper bound is shown to be optimal under some assumptions on the Brauer group \(\mathrm{Br}(k)\). In the special case where \(n=3\) and \(\alpha\) is of exponent \(p=2\), it is known that both of the two values \(2,\,4\) are possible for \(F(\alpha)\). The author gives here a criterion for \(F(\alpha)=2\) using the language of quadratic forms. He then applies this criterion to study the existence of rational points on the intersection of two three-dimensional quadrics in certain cases.
When \(X\) is a complete smooth geometrically irreducible curve, it is proved that the Faddeev index can take any prescribed value, provided that the Brauer classes of exponent \(p\) over \(k\) can have arbitrarily large index.
In the last section, the author introduces the notion of Faddeev cyclic length and computes it for some Brauer classes when the field \(k\) contain all \(p\)-primary roots of unity.

MSC:

11E04 Quadratic forms over general fields
16K50 Brauer groups (algebraic aspects)
11E81 Algebraic theory of quadratic forms; Witt groups and rings
16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)

Citations:

Zbl 1101.16013
Full Text: DOI

References:

[1] Arason J., Elman R., Jacob B.: On generators for the Witt ring. Contemp. Math. 155, 247-269 (1994) · Zbl 0803.11023 · doi:10.1090/conm/155/01384
[2] Becher K., Raczek M.: On the second K-group of a rational function field. Pac. J. Math. 262(1), 1-9 (2013) · Zbl 1328.19002 · doi:10.2140/pjm.2013.262.1
[3] Brumer A.: Remarques sur les couples de formes quadratiques. C.R. Acad. Sci. Paris Ser. A-B 286(16), 679-681 (1978) · Zbl 0392.10021
[4] Cassels, J., Fröhlich, A.: Algebraic number theory. In: Proceedings of the Instructional Conference, Brighton (1965) · Zbl 0645.12001
[5] Colliot-Thelene J.L., Madore D.: Surfaces de Del Pezzo sans point rationnel sur un corps de dimension cohomologique un. J. de l’Institut Mathematique de Jussieu 3(1), 1-16 (2004) · Zbl 1056.14030 · doi:10.1017/S1474748004000015
[6] Elman, R., Karpenko, N., Merkurjev, A.: The algebraic and geometric theory of quadratic forms. AMS Colloquium Publications, vol. 56, pp 1-435. American Mathematical Society, Providence, RI (2008) · Zbl 1165.11042
[7] Faddeev D.K.: Simple algebras over a function field in one variable. AMS Transl. 3, 15-38 (1956) · Zbl 0075.02901
[8] Kahn B.: Comparison of some field invariants. J. Algebra 220(2), 485-492 (2000) · Zbl 0972.11018 · doi:10.1006/jabr.2000.8380
[9] Kunyavskii B.E., Rowen L.H., Tikhonov S.V., Yanchevskii V.I.: Bicyclic algebras of prime exponent over function fields. Trans. Am. Math. Soc. 358, 2579-2610 (2006) · Zbl 1101.16013 · doi:10.1090/S0002-9947-05-03772-4
[10] Mamford D.: Abelian Varieties. Oxford University Press, Oxford (1970) · Zbl 0223.14022
[11] Merkurjev, A.S.: Simple algebras and quadratic forms (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 55(1), 218-224 (1991); (English transl. : Math. USSR Izv. 38, 215-221) · Zbl 0972.11018
[12] Merkurjev A.S., Suslin A.A.: K-cohomology of Severi-Brauer varieties and the norm residue homomorphism (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 46, 1011-1046 (1982)
[13] Milne, J.S.: Étale Cohomology. Princeton Mathematical Series 33 (1980) · Zbl 0433.14012
[14] Pierce, R.: Associative Algebras. Graduates Texts in Mathematics, vol. 88. Springer, New York (1982) · Zbl 0497.16001
[15] Rowen, L.H., Sivatski, A.S., Tignol, J.P.: Division Algebras Over Rational Function Fields in One Variable. Algebra and Number Theory Proceedings of the Silver Jubilee Conference at the University of Hyderabad 2003, pp. 158-180 (2005) · Zbl 1089.16015
[16] Rost M., Serre J.-P., Tignol J.-P.: La forme trace d’une algebre simple centrale de degre 4. C.R. Acad. Sci. Paris Ser. I 342(2), 83-87 (2006) · Zbl 1110.16014 · doi:10.1016/j.crma.2005.11.002
[17] Serre, J.-P.: Corps Locaux. Hermann, Paris (1962) · Zbl 0137.02601
[18] Scharlau, W.: Quadratic and Hermitian Forms. A Series of Comprehensive Studies in Mathematics, vol. 270 (1985) · Zbl 0584.10010
[19] Sivatski, A.S.: Central simple algebras of exponent p and divided power operations. J. K Theory (preprint 472 in LAG) 11 113-123 (2013) · Zbl 1275.16020
[20] Tignol J.P.: Algebres indecomposables d’exposant premier. Adv. Math. 65(3), 205-228 (1987) · Zbl 0642.16015 · doi:10.1016/0001-8708(87)90022-3
[21] Vial C.: Operations in Milnor K-theory. J. Pure Appl. Algebra 213(7), 1325-1345 (2009) · Zbl 1185.19002 · doi:10.1016/j.jpaa.2008.12.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.