×

Changes in population dynamics regimes as a result of both multistability and climatic fluctuation. (English) Zbl 1430.92074

Summary: The paper proposes a mathematical model that describes mouse-like rodent population dynamics. The model is examined through analytical and numerical methods. Changes in the population parameter values lead to a complex evolution of dynamic regimes observed, namely periodic, quasi-periodic and chaotic oscillations, as well as changes in dynamic regimes caused by multistability and external factors. Multistability consists in the existence of various dynamic regimes under the same values of parameters; a transition to these regimes is determined by the initial conditions. An approach is proposed to study multistability by analysing annual population surveys and the model parameter estimates corresponding to the real data set, as well as environmental factors that influence both the birth rate and self-regulation. The adequacy of the results obtained is illustrated by comparing the simulations with the real dynamics of the bank vole population (Myodes glareolus) as a typical example of mouse-like rodents under non-constant environmental conditions. The model study shows that external factors lead to a significant change in attraction basins of coexisting dynamic regimes and shift in model parameter values over the parametric space, which results in a trajectory transition from one dynamic regime to another. As a result, the population size shifts between attraction basins of different dynamic regimes. In certain years, the population size can be attracted to an area of parameter values with similar regimes (the same period of cycles). In particular, the real dynamics of the bank vole population can be represented by a sequence of alternating transients that lead to fluctuations with 3-, 6-, 7- or 14-year periods under constant climatic conditions.

MSC:

92D25 Population dynamics (general)
37N25 Dynamical systems in biology
86A08 Climate science and climate modeling
Full Text: DOI

References:

[1] Elton, C.S.: Periodic fluctuations in numbers of animals: their causes and effects. Br. J. Exp. Biol. 2, 119-163 (1924)
[2] Odum, E.P.: Fundamentals of Ecology. Saunders, Philadelphia (1971)
[3] Gimelfarb, A.A., Ginzburg, L.R., Poluektov, R.A., Pykh, Y.A., Ratner, V.A.: Dynamical Theory of Biological Populations. Nauka, Moscow (1974). (in Russian)
[4] Svirezhev, I.U., Logofet, D.O.: The Stability of Biological Communities. Mir, Moscow (1978). (in Russian)
[5] Gurney, W., Nisbet, R.: Ecological Dynamics. Oxford University Press, New York (1998)
[6] Inchausti, P., Ginzburg, L.R.: Small mammals cycles in northern Europe: patterns and evidence for the maternal effect hypothesis. J. Anim. Ecol. 67, 180-194 (1998)
[7] Ginzburg, L., Colyvan, M.: Ecological Orbits: How Planets Move and Populations Grow. Oxford University Press, New York (2004)
[8] Krebs, C.J.: Population Fluctuations in Rodents. The University of Chicago Press, Chicago (2013)
[9] Lack, D.: The Natural Regulation of Animal Numbers. Oxford University Press, Oxford (1954)
[10] Boer, P.J., Reddingius, J.: Regulation and Stabilization Paradigms in Population Ecology. Wijester Biological Station, Agricultural University, Wageningen (1996)
[11] Hastings, A.: Age dependent dispersal is not a simple process: density dependence, stability, and chaos. Theor. Popul. Biol. 41(3), 388-400 (1992) · Zbl 0747.92022
[12] Dennis, B., Taper, M.L.: Density dependence in time series observations of natural populations estimation and testing. Ecol. Monogr. 64(2), 205-224 (1994)
[13] Hansen, T.F., Stenseth, N.C., Henttonen, H.: Multiannual vole cycles and population regulation during long winters: an analysis of seasonal density dependence. Am. Nat. 154, 129-139 (1999)
[14] Saitoh, T., Bjørnstad, O.N., Stenseth, N.C.: Density dependence in voles and mice: a comparative study. Ecology 80(2), 638-650 (1999)
[15] Reed, A.W., Slade, N.A.: Density dependent recruitment in grassland small mammals. J. Anim. Ecol. 77(1), 57-65 (2008)
[16] Frisman, E.Y., Last, E.V., Lazutkin, A.N.: The mechanism and peculiar characters of seasonal and long-term dynamics of voles Clethrionomys rufocanus and Cl. rutilus: a quantitative study and mathematical modeling. Bull. North-East Sci. Center Russia Acad. Sci. Far East Branch 2, 43-47 (2010). (in Russian)
[17] Novikov, E.A., Panov, V.V., Moshkin, M.P.: Density-dependent regulation in populations of northern red-backed voles (Myodes rutilus) in optimal and suboptimal habitats of southwest Siberia. Biol. Bull. Rev. 2(5), 431-438 (2012)
[18] Fauteux, D., Gauthier, G., Berteaux, D.: Seasonal demography of a cyclic lemming population in the Canadian Arctic. J. Anim. Ecol. 84(5), 1412-1422 (2015)
[19] Zhigalskii, O.A., Mamina, V.P.: Density-dependent regulatory mechanisms in the sexual maturation of male red-backed voles. Russ. J. Ecol. 46(6), 592-594 (2015). (in Russian)
[20] Ward, I.L.: The prenatal stress syndrome: current status. Psychoneuroendocrinology 9(1), 3-11 (1984)
[21] Lee, A.K., McDonald, I.R.: Stress and population regulation in small mammals. Oxf. Rev. Reprod. Biol. 7, 261-304 (1985)
[22] Rogovin, K.A., Moshkin, M.P.: Autoregulation in mammalian populations and stress: an old theme revisited (Review). Zhurnal Obshchei Biologii 68(4), 244-267 (2007). (in Russian)
[23] Dazho, R.: Osnovy ekologii. Moskva. Progress (1975). (in Russian)
[24] Panin, L.E.: Biochemical Mechanisms of Stress. Science, Novosibirsk (1983). (in Russian)
[25] Shilov, I.A.: Stress as an ecological phenomenon. Zoologicheskij zhurnal 63(6), 805-812 (1984). (in Russian)
[26] Christian, J.J.: The adrenal – pituitary system and population cycles in mammals. J. Mammal 31(3), 241-259 (1950)
[27] Bujalska, G.: Fluctuations in an island bank vole population in the light of the study on its organization. Acta Theriol. 30, 3-49 (1985)
[28] Plesher, J.S.: Juvenile dispersal in relation to adult densities in wood mice Apodemus sylvaticus. Acta theriol. 41(2), 177-186 (1996)
[29] Saitoh, T., Stenseth, N.C., Bjornstad, O.N.: Density dependence in fluctuating grey-sided vole populations. J. Anim. Ecol. 66(1), 14-24 (1997)
[30] Chernyavskii, F.B., Lazutkin, A.N.: Cycles of lemmings and voles in the North (Tsikly lemmingov i polevok na Severe). Institut biologicheskikh problem Severa DVO RAN, Magadan (2004). (in Russian)
[31] Kostova, T., Carlsen, T.: The effect of habitat size and predation on the time to extinction of prairie vole populations: simulation studies via SERDYCA. Ecol. Complex. 2, 35-57 (2005) · Zbl 1075.92050
[32] Zhigalskii, O.A.: Structure of the bank vole (Myodes glareolus) population cycles in the core and periphery of its species area. Biol. Bull. 38(6), 629-641 (2011)
[33] Hanski, I., Turchin, P., Korpimäki, E., Henttonen, H.: Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364, 232-235 (1993)
[34] Aanes, R., Saether, B.E., Oritsland, N.A.: Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography 23, 437-443 (2000)
[35] Kausrud, K.L., Mysterud, A., Steen, H., Vik, J.O., Østbye, E., Cazelles, B., Framstad, E., Eikeset, A.M., Mysterud, I., Solhøy, T., Stenseth, N.C.: Linking climate change to lemming cycles. Nature 456, 93-97 (2008)
[36] Myers, P., Lundrigan, B.L., Hoffman, S.M., Haraminac, A.P., Seto, S.H.: Climate induced changes in the small mammal communities of the Northern Great Lakes Region. Global Change Biol. 15(6), 1434-1454 (2009)
[37] Magnusson, W.E., Layme, V.M.G., Lima, A.P.: Complex effects of climate change: population fluctuations in a tropical rodent are associated with the southern oscillation index and regional fire extent, but not directly with local rainfall. Global Change Biol. 16(9), 2401-2406 (2010)
[38] Terry, R.C., Li, C., Hadly, E.A.: Predicting small mammal responses to climatic warming: autecology, geographic range, and the Holocene fossil record. Global Change Biol. 17(10), 3019-3034 (2011)
[39] Elmhagen, B., Hellström, P., Angerbjörn, A., Kindberg, J.: Changes in vole and lemming fluctuations in Northern Sweden 1960-2008 revealed by fox dynamics. Ann. Zool. Fenn. 48(3), 167-179 (2011)
[40] Korpela, K., Delgado, M., Henttonen, H., Korpimaki, E., Koskela, E., Ovaskainen, O., Pietiainen, H., Sundell, J., Gyoccoz, N., Huitu, O.: Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Global Change Biol. 19, 697-710 (2013)
[41] Nater, C.R., van Benthem, K.J., Canale, C.I., Schradin, C., Ozgul, A.: Density feedbacks mediate effects of environmental change on population dynamics of a semidesert rodent. J. Anim. Ecol. (2018). https://doi.org/10.1111/1365-2656.12888 · doi:10.1111/1365-2656.12888
[42] Schmidt, J.H., Rexstad, E.A., Roland, C.A., McIntyre, C.L., MacCluskie, M.C., Flamme, M.J.: Weather-driven change in primary productivity explains variation in the amplitude of two herbivore population cycles in a boreal system. Oecologia 186(2), 435-446 (2018)
[43] Coulson, T., Malo, A.: Case of absent lemmings. Nature 456, 43-44 (2008)
[44] White, T.C.R.: What has stopped the cycles of sub-Arctic animal populations? Predators or food? Basic Appl. Ecol. 12(6), 481-487 (2011)
[45] Henttonen, H., Wallgren, H.: Small rodent dynamics and communities in the birch forest zone of northern Fennoscandia. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon Publishing Group, New York and London
[46] Rai, V.: Chaos in natural populations: edge or wedge? Ecol. Complex. 1, 127-138 (2004)
[47] Cornulier, T., Yoccoz, N.G., Bretagnolle, V., Brommer, J.E., Butet, A., Ecke, F., Elston, D.A., Framstad, E., Henttonen, H., Hörnfeldt, B., et al.: Europe-wide dampening of population cycles in keystone herbivores. Science 340, 63-66 (2013)
[48] Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167-218 (2014) · Zbl 1357.34105
[49] Frisman, E.Y., Neverova, G.P., Kulakov, M.P., Zhigalskii, O.A.: Multimode phenomenon in the population dynamics of animals with short live cycles. Dokl. Biol. Sci. 460, 42-47 (2015)
[50] Frisman, E.Y., Neverova, G.P., Kulakov, M.P.: Change of dynamic regimes in the population of species with short life cycles: results of an analytical and numerical study. Ecol. Compl. 27, 2-11 (2016). https://doi.org/10.1016/j.ecocom.2016.02.001 · doi:10.1016/j.ecocom.2016.02.001
[51] Neverova, G.P., Yarovenko, I.P., Frisman, E.Y.: Dynamics of populations with delayed density dependent birth rate regulation. Ecol. Model. 340, 64-73 (2016). https://doi.org/10.1016/j.ecolmodel.2016.09.005 · doi:10.1016/j.ecolmodel.2016.09.005
[52] Neverova, G.P., Abakumov, A.I., Yarovenko, I.P., Frisman, E.Ya.: Mode change in the dynamics of exploited limited population with age structure. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4396-6 · doi:10.1007/s11071-018-4396-6
[53] Zhigalsky, O.A.: Dynamics of the number and structure of the bank vole (Myodes glareolus, Rodentia) population under different terms of beginning of seasonal reproduction. Russ. J. Zool. 91(5), 619-628 (2012). (in Russian)
[54] Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 5(5), 559-623 (1954)
[55] Kuznetsov, A.P., Savin, A.V., Sedova, Yu.V., Tyuryukina, L.V.: Bifurkatsii otobrazheniy. Izdatelskiy tsentr “Nauka”, Saratov (2012) (in Russian)
[56] Schaffer, W.M., Pederson, B.S., Moore, B.K., Skarpaas, O., King, A.A., Bronnikova, T.N.: Sub-harmonic resonance and multiannual oscillations in northern mammals: a non-linear dynamical systems perspective. Chaos Solitons Fractals 12, 251-264 (2001) · Zbl 0972.92034
[57] Maksimov, A.A.: Tipy vspyshek i prognozy massovogo razmnozheniya gryzunov (na primere vodyanoy krysy). Nauka, Novosibirsk (1977). (in Russian)
[58] Voss, H.U., Timmer, J., Kurths, J.: Nonlinear dynamical system identification from uncertain and indirect measurements. Int. J. Bifur. Chaos 14, 1905-1933 (2004) · Zbl 1129.93545
[59] Bezruchko, B.P., Smirnov, D.A.: Extracting Knowledge from Time Series: An Introduction to Nonlinear Empirical Modeling. Springer, Berlin (2010) · Zbl 1210.00041
[60] Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981) · Zbl 0503.90062
[61] Michalewicz, Z., Schouenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4(1), 1-32 (1996)
[62] Ashichmina, E.V., Frisman, E.Y., Skaletskaya, E.I., Kulikov, A.N.: Mathematical model for dynamics of the number of pelt products from the local population of Mantchurian squirrels. Ecol. Model. 30, 145-156 (1985)
[63] Selyaninov, G.L.: About the agricultural evaluation of the climate. Trudy GGO 20, 177-185 (1928). (in Russian)
[64] Sirotenko, O.D., Gruza, G.V., Rankova, E.Y., Abashina, E.V., Pavlova, V.N.: Modern climate-related changes in heat supply, moistening, and productivity of the agrosphere in Russia. Russ. Meteorol. Hydrol. 32(8), 538-546 (2007)
[65] Babushkina, E.A., Belokopytova, L.V., Zhirnova, D.F., Shah, S.K., Kostyakova, T.V.: Climatically driven yield variability of major crops in Khakassia (South Siberia). Int. J. Biometeorol. 62(6), 939-948 (2018)
[66] Nyamtseren, M., Feng, Q., Deo, R.A.: Comparative study of temperature and precipitation-based aridity indices and their trends in Mongolia. Int. J. Environ. Res. 12(6), 887-899 (2018)
[67] Zhuikova, T.V., Bergman, I.E., Gordeeva, V.A., Meling, E.V.: Dependence of phytomass of herbaceous cenoses on weather factors in anthropogenically impacted areas. Contemp. Problems Ecol. 11(4), 428-437 (2018)
[68] All Russian Research Institute of Hydrometeorological Information - World Data Center [Electronic resource]. http://cliware.meteo.ru/meteo/index_en.html
[69] Nisbet, R.M., Gurney, W.S.C.: The systematic formulation of population models for insects with dynamically varying instar duration. Theor. Popul. Biol. 23(1), 114-135 (1983). https://doi.org/10.1016/0040-5809(83)90008-4 · Zbl 0514.92021 · doi:10.1016/0040-5809(83)90008-4
[70] Turchin, P., Hanski, I.: An empirically based model for latitudinal gradient in vole population dynamics. Am. Nat. 149(5), 842-874 (1997). https://doi.org/10.1086/286027 · doi:10.1086/286027
[71] Liu, S., Chen, L., Agarwal, R.: Recent progress on stage-structured population dynamics. Math. Comput. Model. 36(11-13), 1319-1360 (2002). https://doi.org/10.1016/S0895-7177(02)00279-0 · Zbl 1077.92516 · doi:10.1016/S0895-7177(02)00279-0
[72] Upadhyay, R.K., Kumari, N., Rai, V.: Modeling spatiotemporal dynamics of vole populations in Europe and America. Math. Biosci. 223(1), 47-57 (2010) · Zbl 1181.92087
[73] Huang, T., Zhang, H.: Bifurcation, chaos and pattern formation in a space-and time-discrete predator – prey system. Chaos Solitons Fractals 91, 92-107 (2016). https://doi.org/10.1016/j.chaos.2016.05.009 · Zbl 1372.92082 · doi:10.1016/j.chaos.2016.05.009
[74] Kulakov, M., Frisman, E.Y.: Modeling the spatio-temporal dynamics of a population with age structure and long-range interactions: synchronization and clustering. Math. Biol. Bioinform. 14(1), 1-18 (2019). https://doi.org/10.17537/2019.14.1. (in Russian) · doi:10.17537/2019.14.1
[75] Upadhyay, R.K., Rai, V., Raw, S.N.: Challenges of living in the harsh environments: a mathematical modeling study. Appl. Math. Comput. 217(24), 10105-10117 (2011) · Zbl 1217.92082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.