×

Contact line motion in axial thermocapillary outward flow. (English) Zbl 1460.76189

Summary: We study the contact line dynamics of a viscous droplet deposited at the centre of a substrate subject to an axial thermal gradient. The temperature of the substrate decreases with distance from the centre, so the Marangoni stress induced at the liquid-air interface displaces the liquid radially outward. The flow experiences two stages. In the first stage, the droplet evolves towards an axially symmetric ring whose radius increases with time as \(t^{1/3}\). Using the lubrication approximation, we perform numerical simulations that confirm this law for the motion of the front and show that the maximum thickness of the profile decreases as \(t^{-0.374}\). We explain the evolution law of the contact line by balancing Marangoni and viscous stresses. In the second stage, the contact line becomes unstable and develops smooth corrugations whose amplitude increases with time and that eventually become long fingers. The temporal evolution of the Fourier spectra of the contour shows a shift of the most unstable mode from smaller to larger azimuthal wavenumbers.

MSC:

76D08 Lubrication theory
76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] Brzoska, J., Brochard-Wyart, F. & Rondel, F.1992Exponential growth of fingering instabilities of spreading films under horizontal thermal gradients. Europhys. Lett.19 (2), 97-102.
[2] Brzoska, J. B., Brochard-Wyart, F. & Rondelez, F.1993Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir9 (8), 2220-2224.
[3] Cachile, M., Schneemilch, M., Hamraoui, A. & Cazabat, A. M.2002Films driven by surface tension gradients. Adv. Colloid Interface Sci.96 (1), 59-74.
[4] Campana, D. M., Ubal, S., Giavedoni, M. D., Saita, F. A. & Carvalho, M. S.2016Three dimensional flow of liquid transfer between a cavity and a moving roll. Chem. Engng Sci.149, 169-180.
[5] Casadevall I Solvas, X. & Demello, A. J.2011Droplet microfluidics: recent developments and future applications. Chem. Commun.47 (7), 1936-1942.
[6] Cazabat, A., Heslot, F., Troian, S. M. & Carles, P.1990Fingering instability of thin spreading films driven by temperature gradients. Nature346, 824-826.
[7] Cazabat, A. M. & Stuart, M. A. C.1986Dynamics of wetting: effects of surface roughness. J. Phys. Chem.90 (22), 5845-5849.
[8] Chen, J. Z., Troian, S. M., Darhuber, A. A. & Wagner, S.2005Effect of contact angle hysteresis on thermocapillary droplet actuation. J. Appl. Phys.97 (1), 014906.
[9] Choi, K., Ng, A. H. C., Fobel, R. & Wheeler, A. R.2012Digital Microfluidics. Annu. Rev. Anal. Chem.5 (1), 413-440.
[10] Craster, R. V. & Matar, O. K.2009Dynamics and stability of thin liquid films. Rev. Mod. Phys.81, 1131-1198.
[11] Darhuber, A., Davis, J., Troian, S. & Reisner, W.2003Thermocapillary actuation of liquid flow on chemically patterned surfaces. Phys. Fluids15 (5), 1295-1304. · Zbl 1186.76125
[12] Diez, J. A. & Kondic, L.2001Contact line instabilities of thin liquid films. Phys. Rev. Lett.86, 632-635. · Zbl 1081.76545
[13] Dominguez Torres, A., Garrido Gonzalez, J. M., Villa, A. L. & Gomba, J. M.2016 Dynamics of the contact line of a droplet driven by a temperature gradient. XXII Div. Fluid Dynamics, UNAM, Uxmal, Mexico, http://champagn.fciencias.unam.mx/ddf2016/programa2016.pdf. DDF-SFM.
[14] Ehrhard, P. & Davis, S. H.1991Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech.229 (1979), 365-388. · Zbl 0850.76760
[15] Fraysse, N. & Homsy, G.1994An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids. Phys. Fluids6 (4), 1491-1504.
[16] Gomba, J. M., Diez, J., González, A. G. & Gratton, R.2005Spreading of a micrometric fluid strip down a plane under controlled initial conditions. Phys. Rev. E71, 016304.
[17] Gomba, J. M., Diez, J., Gratton, R., González, A. G. & Kondic, L.2007Stability study of a constant-volume thin film flow. Phys. Rev. E76, 046308.
[18] Gomba, J. M. & Homsy, G. M.2010Regimes of thermocapillary migration of droplets under partial wetting conditions. J. Fluid Mech.647, 125-142. · Zbl 1189.76627
[19] Gotkis, Y., Ivanov, I., Murisic, N. & Kondic, L.2006Dynamic structure formation at the fronts of volatile liquid drops. Phys. Rev. Lett.97, 186101.
[20] Hoang, A. & Kavehpour, H. P.2011Dynamics of nanoscale precursor film near a moving contact line of spreading drops. Phys. Rev. Lett.106, 254501.
[21] Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J. B. & Demello, A. J.2008Microdroplets: a sea of applications?Lab on a Chip8 (8), 1244-1254.
[22] Huppert, H. E.1982The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech.121, 43-58.
[23] Karapetsas, G., Sahu, K. C., Sefiane, K. & Matar, O. K.2014Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature. Langmuir30, 4310-4321.
[24] Karbalaei, A., Kumar, R. & Cho, H. J.2016Thermocapillarity in microfluidics – a review. Micromachines7 (1), 1-41.
[25] Keiser, L., Bense, H., Colinet, P., Bico, J. & Reyssat, E.2017Marangoni bursting: evaporation-induced emulsification of binary mixtures on a liquid layer. Phys. Rev. Lett.118, 074504.
[26] Lopez, J., Miller, C. A. & Ruckenstein, E.1976Spreading kinetics of liquid drops on solids. J. Colloid Interface Sci.56 (3), 460-468.
[27] Mac Intyre, J. R.2017 Effects of molecular forces on droplets and thermocapillary flows. PhD thesis, UNCPBA. Available at: https://www.ridaa.unicen.edu.ar/xmlui/handle/123456789/1400.
[28] Mac Intyre, J. R., Gomba, J. M., Perazzo, C. A., Correa, P. G. & Sellier, M.2018Thermocapillary migration of droplets under molecular and gravitational forces. J. Fluid Mech.847, 1-27. · Zbl 1404.76081
[29] Melo, F., Joanny, J. F. & Fauve, S.1989Fingering instability of spinning drops. Phys. Rev. Lett.63, 1958-1961.
[30] Nguyen, H. B. & Chen, J. C.2010A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface. Phys. Fluids22 (6), 062102. · Zbl 1190.76092
[31] Oron, A., Davis, S. H. & Bankoff, S. G.1997Long-scale evolution of thin liquid films. Rev. Mod. Phys.69, 931-980.
[32] Pairam, E. & Fernández-Nieves, A.2009Generation and stability of toroidal droplets in a viscous liquid. Phys. Rev. Lett.102, 234501.
[33] Popescu, M. N., Oshanin, G., Dietrich, S. & Cazabat, A.-M.2012Precursor films in wetting phenomena. J. Phys.: Condens. Matter24 (24), 243102.
[34] Pratap, V., Moumen, N. & Subramanian, R. S.2008Thermocapillary motion of a liquid drop on a horizontal solid surface. Langmuir24 (9), 5185-5193.
[35] Smith, M. K.1995Thermocapillary migration of a two-dimensional liquid droplet on a solid surface. J. Fluid Mech.294, 209-230. · Zbl 0842.76021
[36] Spaid, M. A. & Homsy, G. M.1996Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids8 (2), 460-478. · Zbl 1023.76542
[37] Staicu, A. & Mugele, F.2006Electrowetting-induced oil film entrapment and instability. Phys. Rev. Lett.97, 167801.
[38] Stone, H. A., Stroock, A. D. & Ajdari, A.2004Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech.36 (1), 381-411. · Zbl 1076.76076
[39] Sur, J., Witelski, T. P. & Behringer, R. P.2004Steady-profile fingering flows in Marangoni driven thin films. Phys. Rev. Lett.93, 247803.
[40] Troian, S. M., Joanny, J. & Safran, S.1989Fingering instabilities of driven spreading films. Europhys. Lett.10 (1), 25-30.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.