×

Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations. (Des modèles stochastiques d’évolution aux équations de Hamilton-Jacobi.) (English. French summary) Zbl 1526.92035

Summary: We consider a stochastic model for the evolution of a discrete population structured by a trait with values on a finite grid of the torus, and with mutation and selection. We focus on a parameter scaling where population is large, individual mutations are small but not rare, and the grid mesh is much smaller than the size of mutation steps. When considering the evolution of the population in long time scales, the contribution of small sub-populations may strongly influence the dynamics. Our main result quantifies the asymptotic dynamics of subpopulation sizes on a logarithmic scale. We establish that under our rescaling, the stochastic discrete process converges to the viscosity solution of a Hamilton-Jacobi equation. The proof makes use of almost sure maximum principles and careful control of the martingale parts.

MSC:

92D15 Problems related to evolution
92D25 Population dynamics (general)
60J85 Applications of branching processes
35F21 Hamilton-Jacobi equations
35D40 Viscosity solutions to PDEs

References:

[1] Bansaye, Vincent; Méléard, Sylvie, Stochastic models for structured populations. Scaling limits and long time behavior, 1.4 (2015), Springer: Springer, Cham · Zbl 1333.92004 · doi:10.1007/978-3-319-21711-6
[2] Barles, Guy, Solutions de viscosité des équations de Hamilton-Jacobi, 17 (1994), Springer-Verlag: Springer-Verlag, Paris · Zbl 0819.35002
[3] Barles, Guy; Mirrahimi, Sepideh; Perthame, Benoît, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., 16, 3, 321-340 (2009) · Zbl 1204.35027 · doi:10.4310/MAA.2009.v16.n3.a4
[4] Berestycki, Julien; Brunet, Éric; Harris, John W.; Harris, Simon C.; Roberts, Matthew I., Growth rates of the population in a branching Brownian motion with an inhomogeneous breeding potential, Stochastic Process. Appl., 125, 5, 2096-2145 (2015) · Zbl 1328.60193 · doi:10.1016/j.spa.2014.12.008
[5] Biggins, J. D., Probability and mathematical genetics, 378, Branching out, 113-134 (2010), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1213.60134 · doi:10.1017/CBO9781139107174.007
[6] Billiard, Sylvain; Collet, Pierre; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi, European Congress of Math., Stochastic dynamics for adaptation and evolution of microorganisms, 525-550 (2018), European Mathematical Society: European Mathematical Society, Zürich · Zbl 1401.92156 · doi:10.4171/176-1/25
[7] Blath, Jochen; Paul, Tobias; Tóbiás, András, A stochastic adaptive dynamics model for bacterial populations with mutation, dormancy and transfer, ALEA Lat. Am. J. Probab. Math. Stat., 20, 1, 313-357 (2023) · Zbl 1509.60156 · doi:10.30757/alea.v20-12
[8] Bovier, Anton; Coquille, Loren; Smadi, Charline, Crossing a fitness valley as a metastable transition in a stochastic population model, Ann. Appl. Probab., 29, 6, 3541-3589 (2019) · Zbl 1433.92033 · doi:10.1214/19-AAP1487
[9] Callegaro, Alice; Roberts, Matthew I., A spatially- dependent fragmentation process (2021)
[10] Calvez, Vincent; Figueroa Iglesias, Susely; Hivert, Hélène; Méléard, Sylvie; Melnykova, Anna; Nordmann, Samuel, CEMRACS 2018, 67, Horizontal gene transfer: numerical comparison between stochastic and deterministic approaches, 135-160 (2020), EDP Sci.: EDP Sci., Les Ulis · Zbl 1447.92248 · doi:10.1051/proc/202067009
[11] Champagnat, Nicolas, A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stochastic Process. Appl., 116, 8, 1127-1160 (2006) · Zbl 1100.60055 · doi:10.1016/j.spa.2006.01.004
[12] Champagnat, Nicolas; Henry, Benoit, A probabilistic approach to Dirac concentration in nonlocal models of adaptation with several resources, Ann. Appl. Probab., 29, 4, 2175-2216 (2019) · Zbl 1466.60054 · doi:10.1214/18-AAP1446
[13] Champagnat, Nicolas; Méléard, Sylvie, Polymorphic evolution sequence and evolutionary branching, Probab. Theory Relat. Fields, 151, 1-2, 45-94 (2011) · Zbl 1225.92040 · doi:10.1007/s00440-010-0292-9
[14] Champagnat, Nicolas; Méléard, Sylvie; Tran, Viet Chi, Stochastic analysis of emergence of evolutionary cyclic behavior in population dynamics with transfer, Ann. Appl. Probab., 31, 4, 1820-1867 (2021) · Zbl 1476.60152 · doi:10.1214/20-aap1635
[15] Coquille, Loren; Kraut, Anna; Smadi, Charline, Stochastic individual-based models with power law mutation rate on a general finite trait space, Electron. J. Probab., 26, 37 p. pp. (2021) · Zbl 1490.37111 · doi:10.1214/21-ejp693
[16] Dieckmann, Ulf; Law, Richard, The dynamical theory of coevolution: a derivation from stochastic ecological processes, J. Math. Biol., 34, 5-6, 579-612 (1996) · Zbl 0845.92013 · doi:10.1007/s002850050022
[17] Diekmann, Odo; Jabin, Pierre-Emanuel; Mischler, Stéphane; Perthame, Benoît, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theoret. Population Biol., 67, 4, 257-271 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[18] Durrett, Rick; Mayberry, John, Traveling waves of selective sweeps, Ann. Appl. Probab., 21, 2, 699-744 (2011) · Zbl 1219.92037 · doi:10.1214/10-AAP721
[19] Forien, Raphaël; Garnier, Jimmy; Patout, Florian, Ancestral lineages in mutation selection equilibria with moving optimum, Bull. Math. Biol., 84, 9, 43 p. pp. (2022) · Zbl 1497.92176 · doi:10.1007/s11538-022-01048-w
[20] Jabin, Pierre-Emmanuel, Small populations corrections for selection-mutation models, Netw. Heterog. Media, 7, 4, 805-836 (2012) · Zbl 1270.35047 · doi:10.3934/nhm.2012.7.805
[21] Jacod, Jean; Shiryaev, Albert N., Limit theorems for stochastic processes, 288 (2003), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1018.60002 · doi:10.1007/978-3-662-05265-5
[22] Jakubowski, Adam, On the Skorokhod topology, Ann. Inst. H. Poincaré Probab. Statist., 22, 3, 263-285 (1986) · Zbl 0609.60005
[23] Joffe, A.; Métivier, M., Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. in Appl. Probab., 18, 1, 20-65 (1986) · Zbl 0595.60008 · doi:10.2307/1427238
[24] Keeling, Patrick J.; Palmer, Jeffrey D., Horizontal gene transfer in eukaryotic evolution, Nat. Rev. Genet., 8, 605-618 (2008) · doi:10.1038/nrg2386
[25] Levin, Bruce R.; Stewart, Frank M., The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors, Genetics, 94, 2, 425-443 (1980) · doi:10.1093/genetics/94.2.425
[26] Lorz, Alexander; Mirrahimi, Sepideh; Perthame, Benoît, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36, 6, 1071-1098 (2011) · Zbl 1229.35113 · doi:10.1080/03605302.2010.538784
[27] Maillard, Pascal; Raoul, Gaël; Tourniaire, Julie, Spatial dynamics of a population in a heterogeneous environment (2021)
[28] Mallein, Bastien, Maximal displacement of a branching random walk in time-inhomogeneous environment, Stochastic Process. Appl., 125, 10, 3958-4019 (2015) · Zbl 1330.60105 · doi:10.1016/j.spa.2015.05.011
[29] Metz, J. A.J.; Geritz, S. A.H.; Meszéna, G.; Jacobs, F. A.J.; Heerwaarden, J. S. Van; Strien, S. J. Van; Verduyn Lunel, S. M., Proc. Colloquium (Amsterdam, Jan. 1995), 45, Adaptative dynamics: a geometrical study of the consequences of nearly faithful reproduction, 183-231 (1996), North-Holland · Zbl 0972.92024
[30] Mirrahimi, Sepideh; Barles, Guy; Perthame, Benoît; Souganidis, Panagiotis E., A singular Hamilton-Jacobi equation modeling the tail problem, SIAM J. Math. Anal., 44, 6, 4297-4319 (2012) · Zbl 1280.35007 · doi:10.1137/100819527
[31] Ochman, Howard; Lawrence, Jeffrey G.; Groisman, Eduardo A., Lateral gene transfer and the nature of bacterial innovation, Nature, 405, 299-304 (2000) · doi:10.1038/35012500
[32] Perthame, Benoît; Barles, Guy, Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., 57, 7, 3275-3301 (2008) · Zbl 1172.35005 · doi:10.1512/iumj.2008.57.3398
[33] Perthame, Benoît; Gauduchon, Mathias, Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations, Math. Med. Biol., 27, 3, 195-210 (2010) · Zbl 1196.92031 · doi:10.1093/imammb/dqp018
[34] Waxman, D.; Gavrilets, S., 20 Questions on adaptive dynamics, J. Evol. Biol., 18, 5, 1139-1154 (2005) · doi:10.1111/j.1420-9101.2005.00948.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.