×

Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer. (English) Zbl 1416.49024

Summary: We consider a state-constrained optimal control problem of a system of two non-local partial differential equations, which is an extension of the one introduced in a previous work in mathematical oncology. The aim is to control the tumor size through chemotherapy while avoiding the emergence of resistance to the drugs. The numerical approach to solve the problem was the combination of direct methods and continuation on discretization parameters, which happen to be insufficient for the more complicated model, where diffusion is added to account for mutations. In the present paper, we propose an approach relying on changing the problem so that it can theoretically be solved thanks to a Pontryagin’s maximum principle in infinite dimension. This provides an excellent starting point for a much more reliable and efficient algorithm combining direct methods and continuations. The global idea is new and can be thought of as an alternative to other numerical optimal control techniques.

MSC:

49M05 Numerical methods based on necessary conditions
49M25 Discrete approximations in optimal control
92C50 Medical applications (general)
49S05 Variational principles of physics

Software:

Ipopt

References:

[1] Pouchol, C., Clairambault, J., Lorz, A., Trélat, E.: Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. Journal de Mathématiques Pures et Appliquées 116, 268-308 (2017). https://doi.org/10.1016/j.matpur.2017.10.007 · Zbl 1393.35263 · doi:10.1016/j.matpur.2017.10.007
[2] Lorz, A., Lorenzi, T., Clairambault, J., Escargueil, A., Perthame, B.: Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. arXiv preprint arXiv:1312.6237 (2013) · Zbl 1334.92204
[3] Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical programming. Duxbury Press 36(5), 519-554 (2002) · Zbl 0701.90062
[4] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25-57 (2006) · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[5] Trélat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154(3), 713-758 (2012) · Zbl 1257.49019 · doi:10.1007/s10957-012-0050-5
[6] Cerf, M., Haberkorn, T., Trélat, E.: Continuation from a flat to a round earth model in the coplanar orbit transfer problem. Optimal Control Appl. Methods 33(6), 654-675 (2012) · Zbl 1277.49027 · doi:10.1002/oca.1016
[7] Chupin, M., Haberkorn, T., Trélat, E.: Low-thrust Lyapunov to Lyapunov and Halo to Halo with \[L^2\] L2-minimization. ESAIM: Math. Model. Numer. Anal. 51(3), 965-996 (2017) · Zbl 1370.49024 · doi:10.1051/m2an/2016044
[8] Gergaud, Joseph, Haberkorn, Thomas: Homotopy method for minimum consumption orbit transfer problem. ESAIM: COCV 12(2), 294-310 (2006). https://doi.org/10.1051/cocv:2006003 · Zbl 1113.49032 · doi:10.1051/cocv:2006003
[9] Caillau, J.B., Daoud, B., Gergaud, J.: Minimum fuel control of the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 114(1), 137-150 (2012). https://doi.org/10.1007/s10569-012-9443-x · Zbl 1266.70010 · doi:10.1007/s10569-012-9443-x
[10] Bulirsch, R., Nerz, E., Pesch, H.J., von Stryk, O.: Combining direct and indirect methods in optimal control: range maximization of a hang glider. In: Bulirsch, R., Miele, A., Stoer, J., Well, K. (eds.) Optimal Control. ISNM International Series of Numerical Mathematics, vol. 111. Birkhäuser, Basel (1993) · Zbl 0808.65067
[11] Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23(1), 2 (1994) · Zbl 0811.49029
[12] von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37(1), 357-373 (1992). https://doi.org/10.1007/BF02071065 · Zbl 0784.49023 · doi:10.1007/BF02071065
[13] Diekmann, O., et al.: A beginner’s guide to adaptive dynamics. Banach Center Publ. 63, 47-86 (2004) · Zbl 1051.92032
[14] Diekmann, O., Jabin, P.E., Mischler, S., Perthame, B.: The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol. 67(4), 257-271 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[15] Perthame, B.: Transport Equations in Biology. Springer, New York (2006) · Zbl 1185.92006
[16] Chisholm, R.H., Lorenzi, T., Clairambault, J.: Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation. Biochimica et Biophysica Acta (BBA) - General Subjects 1860(11), 2627-2645 (2016). https://doi.org/10.1016/j.bbagen.2016.06.009 · doi:10.1016/j.bbagen.2016.06.009
[17] Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2972-6 · Zbl 1331.92008 · doi:10.1007/978-1-4939-2972-6
[18] Costa, M., Boldrini, J., Bassanezi, R.: Optimal chemical control of populations developing drug resistance. Math. Med. Biol. 9(3), 215-226 (1992) · Zbl 0779.92011 · doi:10.1093/imammb/9.3.215
[19] Kimmel, M.; Świerniak, A.; Friedman, A. (ed.), Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance, No. 1872, 185-221 (2006), Berlin
[20] Ledzewicz, U., Schättler, H.: Drug resistance in cancer chemotherapy as an optimal control problem. Discrete Contin. Dyn. Syst. Ser. B 6(1), 129 (2006) · Zbl 1088.92040
[21] Ledzewicz, U., Schättler, H.: On optimal chemotherapy for heterogeneous tumors. J. Biol. Syst. 22(02), 177-197 (2014) · Zbl 1343.92232 · doi:10.1142/S0218339014400014
[22] Carrère, C.: Optimization of an in vitro chemotherapy to avoid resistant tumours. J. Theor. Biol. 413, 24-33 (2017). https://doi.org/10.1016/j.jtbi.2016.11.009 · Zbl 1368.92081 · doi:10.1016/j.jtbi.2016.11.009
[23] Lorz, A., Lorenzi, T., Hochberg, M.E., Clairambault, J., Perthame, B.: Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: Math. Model. Numer. Anal. 47(02), 377-399 (2013) · Zbl 1274.92025 · doi:10.1051/m2an/2012031
[24] Greene, J., Lavi, O., Gottesman, M.M., Levy, D.: The impact of cell density and mutations in a model of multidrug resistance in solid tumors. Bull. Math. Biol. 76(3), 627-653 (2014) · Zbl 1329.92055 · doi:10.1007/s11538-014-9936-8
[25] Lorenzi, T., Chisholm, R.H., Desvillettes, L., Hughes, B.D.: Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments. J. Theor. Biol. 386, 166-176 (2015) · Zbl 1343.92320 · doi:10.1016/j.jtbi.2015.08.031
[26] Lorz, A., Lorenzi, T., Clairambault, J., Escargueil, A., Perthame, B.: Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol. 77(1), 1-22 (2015) · Zbl 1334.92204 · doi:10.1007/s11538-014-0046-4
[27] Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Springer, New York (2012)
[28] Leman, H., Meleard, S., Mirrahimi, S.: Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete Contin. Dyn. Syst. Ser. B (2014) https://doi.org/10.1016/j.matpur.2017.10.007 · Zbl 1310.35231
[29] Bonnefon, O., Coville, J., Legendre, G.: Concentration phenomenon in some non-local equation (2015). Preprint arXiv:1510.01971 · Zbl 1360.35291
[30] Cabré, X., Roquejoffre, J.M.: The influence of fractional diffusion in fisher-KPP equations. Commun. Math. Phys. 320(3), 679-722 (2013) · Zbl 1307.35310 · doi:10.1007/s00220-013-1682-5
[31] Coville, J.: Convergence to equilibrium for positive solutions of some mutation – selection model (2013). Preprint arXiv:1308.6471
[32] Chisholm, R.H., Lorenzi, T., Lorz, A.: Effects of an advection term in nonlocal Lotka-Volterra equations. Commun. Math. Sci. 14(4), 1181-1188 (2016) · Zbl 1344.35155 · doi:10.4310/CMS.2016.v14.n4.a16
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.