×

Concentration phenomenon in some non-local equation. (English) Zbl 1360.35291

Summary: We are interested in the long time behaviour of the positive solutions of the Cauchy problem involving the integro-differential equation \[ \partial_t u(t,x)=\int_\Omega m(x,y)(u(t,y)-u(t,x))\,dy+\bigg(a(x)-\int_\Omega k(x,y)u(t,y)\,dy\bigg)u(t,x), \] supplemented by the initial condition \(u(0,\cdot)=u_0\) in \(\Omega\). Such a problem is used in population dynamics models to capture the evolution of a clonal population structured with respect to a phenotypic trait. In this context, the function \(u\) represents the density of individuals characterized by the trait, the domain of trait values \(\Omega\) is a bounded subset of \(\mathbb{R}^N\), the kernels \(k\) and \(m\) respectively account for the competition between individuals and the mutations occurring in every generation, and the function \(a\) represents a growth rate. When the competition is independent of the trait , we construct a positive stationary solution which belongs to the space of Radon measures on \(\Omega\). Moreover, in the case where this measure is regular and bounded, we prove its uniqueness and show that, for any non-negative initial datum in \(L^1(\Omega)\cap L^{\infty}(\Omega)\), the solution of the Cauchy problem converges to this limit measure in \(L^2(\Omega)\). We also exhibit an example for which the measure is singular and non-unique, and investigate numerically the long time behaviour of the solution in such a situation. The numerical simulations seem to reveal a dependence of the limit measure with respect to the initial datum.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35R09 Integro-partial differential equations
45K05 Integro-partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
92D15 Problems related to evolution

Software:

FreeFem++

References:

[1] U. M. Asher, Implicit-explicit methods for time-dependent partial differential equations,, SIAM J. Numer. Anal., 32, 797 (1995) · Zbl 0841.65081 · doi:10.1137/0732037
[2] U. M. Asher, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations,, Appl. Numer. Math., 25, 151 (1997) · Zbl 0896.65061 · doi:10.1016/S0168-9274(97)00056-1
[3] G. Barles, Dirac concentrations in Lotka-Volterra parabolic PDEs,, Indiana Univ. Math. J., 57, 3275 (2008) · Zbl 1172.35005 · doi:10.1512/iumj.2008.57.3398
[4] H. Berestycki, Persistence criteria for populations with non-local dispersion,, Journal of Mathematical Biology, 72, 1693 (2016) · Zbl 1346.35202 · doi:10.1007/s00285-015-0911-2
[5] H. Berestycki, On the definition and the properties of the principal eigenvalue of some nonlocal operators,, Journal of Functional Analysis, 271 (2016) · Zbl 1358.47044 · doi:10.1016/j.jfa.2016.05.017
[6] H. Berestycki, Liouville-type results for semilinear elliptic equations in unbounded domains,, Ann. Mat. Pura Appl., 186, 469 (2007) · Zbl 1223.35022 · doi:10.1007/s10231-006-0015-0
[7] H. Berestycki, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains,, Comm. Pure Appl. Math., 47, 47 (1994) · Zbl 0806.35129 · doi:10.1002/cpa.3160470105
[8] H. Berestycki, On the principal eigenvalue of elliptic operators in \(\mathbbR^N\) and applications,, J. Eur. Math. Soc. (JEMS), 8, 195 (2006) · Zbl 1105.35061 · doi:10.4171/JEMS/47
[9] R. Bürger, Reaction-diffusion equations for population dynamics with forced speed. I. The case of the whole space,, Discrete Contin. Dyn. Syst., 21, 41 (2008) · Zbl 1173.35542 · doi:10.3934/dcds.2008.21.41
[10] R. Bürger, <em>The Mathematical Theory of Selection, Recombination, and Mutation</em>,, Wiley series in mathematical and computational biology (2000) · Zbl 0959.92018
[11] R. Bürger, Mutation load and mutation-selection-balance in quantitative genetic traits,, J. Math. Biol., 32, 193 (1994) · Zbl 0823.92013
[12] A. Calsina, Stationary solutions of a selection mutation model: The pure mutation case,, Math. Models Methods Appl. Sci., 15, 1091 (2005) · Zbl 1081.92029 · doi:10.1142/S0218202505000637
[13] A. Calsina, Asymptotic stability of equilibria of selection-mutation equations,, J. Math. Biol., 54, 489 (2007) · Zbl 1115.92042 · doi:10.1007/s00285-006-0056-4
[14] A. Calsina, Asymptotics of steady states of a selection-mutation equation for small mutation rate,, Proc. Roy. Soc. Edinburgh Sect. A, 143, 1123 (2013) · Zbl 1293.35341 · doi:10.1017/S0308210510001629
[15] N. Champagnat, Individual-based probabilistic models of adaptive evolution and various scaling approximations,, Seminar on Stochastic Analysis, 75 (2008) · Zbl 1140.92017 · doi:10.1007/978-3-7643-8458-6_6
[16] J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators,, J. Differential Equations, 249, 2921 (2010) · Zbl 1218.45002 · doi:10.1016/j.jde.2010.07.003
[17] X. Mao, Convergence to equilibrium for positive solutions of some mutation-selection model,, preprint 2013. (2013)
[18] J. Coville, Singular measure as principal eigenfunction of some nonlocal operators,, Appl. Math. Lett., 26, 831 (2013) · Zbl 1311.45002 · doi:10.1016/j.aml.2013.03.005
[19] J. Coville, Nonlocal refuge model with a partial control,, Discrete Contin. Dynam. Systems, 35, 1421 (2015) · Zbl 1302.45014 · doi:10.3934/dcds.2015.35.1421
[20] J. Coville, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 179 (2013) · Zbl 1288.45007 · doi:10.1016/j.anihpc.2012.07.005
[21] L. Desvillettes, On selection dynamics for continuous structured populations,, Comm. Math. Sci., 6, 729 (2008) · Zbl 1176.45009 · doi:10.4310/CMS.2008.v6.n3.a10
[22] O. Diekmann, A beginner’s guide to adaptive dynamics,, Banach Center Publ., 63, 47 (2003) · Zbl 1051.92032
[23] O. Diekmann, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach,, Theoret. Population Biol., 67, 257 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[24] N. Fournier, A microscopic probabilistic description of a locally regulated population and macroscopic approximations,, Ann. Appl. Probab., 14, 1880 (2004) · Zbl 1060.92055 · doi:10.1214/105051604000000882
[25] F. Hecht, New development in FreeFem++,, J. Numer. Math., 20, 251 (2012) · Zbl 1266.68090
[26] P. E. Jabin, On selection dynamics for competitive interactions,, J. Math. Biol., 63, 493 (2011) · Zbl 1230.92038 · doi:10.1007/s00285-010-0370-8
[27] A. Lorz, Dirac mass dynamics in multidimensional nonlocal parabolic equations,, Comm. Partial Differential Equations, 36, 1071 (2011) · Zbl 1229.35113 · doi:10.1080/03605302.2010.538784
[28] S. Méléard, Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity,, Comm. Partial Differential Equations, 40, 957 (2015) · Zbl 1346.35109 · doi:10.1080/03605302.2014.963606
[29] P. Michel, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl., 84, 1235 (2005) · Zbl 1085.35042 · doi:10.1016/j.matpur.2005.04.001
[30] S. Mirrahimi, Dynamics of sexual populations structured by a space variable and a phenotypical trait,, Theoret. Population Biol., 84, 87 (2013) · Zbl 1275.92098 · doi:10.1016/j.tpb.2012.12.003
[31] B. Perthame, From differential equations to structured population dynamics,, Transport Equations in Biology, 1 (2007)
[32] G. Raoul, Long time evolution of populations under selection and vanishing mutations,, Acta Appl. Math., 114, 1 (2011) · Zbl 1213.35112 · doi:10.1007/s10440-011-9603-0
[33] W. Shen, Local stability of evolutionary attractors for continuous structured populations,, Monatsh. Math., 165, 117 (2012) · Zbl 1263.92035 · doi:10.1007/s00605-011-0354-9
[34] W. Shen, On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications,, Discrete Contin. Dyn. Syst., 35, 1665 (2015) · Zbl 1302.45004 · doi:10.3934/dcds.2015.35.1665
[35] W. Shen, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats,, J. Differential Equations, 249, 747 (2010) · Zbl 1196.45002 · doi:10.1016/j.jde.2010.04.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.