×

The impact of cell density and mutations in a model of multidrug resistance in solid tumors. (English) Zbl 1329.92055

Summary: In this paper we develop a mathematical framework for describing multidrug resistance in cancer. To reflect the complexity of the underlying interplay between cancer cells and the therapeutic agent, we assume that the resistance level is a continuous parameter. Our model is written as a system of integro-differential equations that are parameterized by the resistance level. This model incorporates the cell density and mutation dependence. Analysis and simulations of the model demonstrate how the dynamics evolves to a selection of one or more traits corresponding to different levels of resistance. The emerging limit distribution with nonzero variance is the desirable modeling outcome as it represents tumor heterogeneity.

MSC:

92C50 Medical applications (general)

References:

[1] Bellomo, N. (1997). Nonlinear models and problems in applied sciences from differential quadrature to generalized collocation methods. Math. Comput. Model., 26(4), 13-34. · Zbl 0898.65074 · doi:10.1016/S0895-7177(97)00142-8
[2] Birkhead, B. G., Rakin, E. M., Gallivan, S., Dones, L., & Rubens, R. D. (1987). A mathematical model of the development of drug resistance to cancer chemotherapy. Eur. J. Cancer Clin. Oncol., 23(9), 1421-1427. · doi:10.1016/0277-5379(87)90133-7
[3] Bozic, I., Allen, B., & Nowak, M. A. (2012). Dynamics of targeted cancer therapy. Trends Mol. Med., 18(6), 311-316. · doi:10.1016/j.molmed.2012.04.006
[4] Brimacombe, K. R., Hall, M. D., Auld, D. S., Inglese, J., Austin, C. P., Gottesman, M. M., & Fung, K. L. (2009). A dual-fluorescence high-throughput cell line system for probing multidrug resistance. Assay Drug Dev. Technol., 7(3), 233-249. · doi:10.1089/adt.2008.165
[5] Calsina, À., & Cuadrado, S. (2000). A model for the adaptive dynamics of the maturation age. Ecol. Model., 133, 33-43. · doi:10.1016/S0304-3800(00)00278-7
[6] Calsina, À., & Cuadrado, S. (2004). Small mutation rate and evolutionary stable strategies in infinite dimensional adaptive dynamics. J. Math. Biol., 48, 135-159. · Zbl 1078.92051 · doi:10.1007/s00285-003-0226-6
[7] Champagnat, N., Ferrière, R., & Méléard, S. (2006). Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol., 69(3), 297-321. · Zbl 1118.92039 · doi:10.1016/j.tpb.2005.10.004
[8] Coldman, A. J., & Goldie, J. H. (1985). Role of mathematical modeling in protocol formulation in cancer chemotherapy. Cancer Treat. Rep., 69(10), 1041-1048.
[9] Coldman, A. J., & Goldie, J. H. (1986). A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull. Math. Biol., 48(3-4), 279-292. · Zbl 0613.92006 · doi:10.1007/BF02459682
[10] Desvillettes, L., Jabin, P. E., Mischler, S., & Raoul, G. (2008). On selection dynamics for continuous structured populations. Commun. Math. Sci., 6(3), 729-747. · Zbl 1176.45009 · doi:10.4310/CMS.2008.v6.n3.a10
[11] Diekmann, O., Jabin, P. E., Mischler, S., & Perthame, B. (2005). The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol., 67(4), 257-271. · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[12] Fister, K. R., & Panetta, J. C. (2003). Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J. Appl. Math., 63(6), 1954-1971. · Zbl 1058.92025 · doi:10.1137/S0036139902413489
[13] Fodal, V., Pierobon, M., Liotta, L., & Petricoin, E. (2011). Mechanisms of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J., 17(2), 89-95. · doi:10.1097/PPO.0b013e318212dd3d
[14] Forys, U., & Marciniak-Czochra, A. (2003). Logistic equations in tumor growth modeling. Int. J. Appl. Math. Comput. Sci., 13(3), 317-325. · Zbl 1035.92017
[15] Gillet, J. P., & Gottesman, M. M. (2010). Mechanisms of multidrug reistance in cancer. Methods Mol. Biol., 596, 47-76. · doi:10.1007/978-1-60761-416-6_4
[16] Goldie, J. H., & Coldman, A. J. (1979). A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep., 63(11-12), 1727-1733.
[17] Goldie, J. H., & Coldman, A. J. (1983a). A model for resistance of tumor cells to cancer chemotherapeutic agents. Math. Biosci., 65, 291-307. · Zbl 0519.92008 · doi:10.1016/0025-5564(83)90066-4
[18] Goldie, J. H., & Coldman, A. J. (1983b). Quantative model for multiple levels of drug resistance in clinical tumors. Cancer Treat. Rep., 67(10), 923-931.
[19] Goldie, J. H., & Coldman, A. J. (1998). Drug resistance in cancer: mechanisms and models. Cambridge: Cambridge University Press. · Zbl 0519.92008 · doi:10.1017/CBO9780511666544
[20] Goldie, J. H., Coldman, A. J., & Gudauskas, G. A. (1982). Rationale for the use of alternating non-cross resistant chemotherapy. Cancer Treat. Rep., 66(3), 439-449.
[21] Grantab, R., Sivananthan, S., & Tannock, I. F. (2006). The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res., 66(2), 1033-1039. · doi:10.1158/0008-5472.CAN-05-3077
[22] Hakanson, M., Kobel, S., Lutolf, M. P., Textor, M., Cukierman, E., & Charnley, M. (2012). Controlled breast cancer microarrays for the deconvolution of cellular multilayering and density effects upon drug responses. PLoS ONE, 7(6), e40141. · doi:10.1371/journal.pone.0040141
[23] Harnevo, L. E., & Agur, Z. (1991). The dynamics of gene amplification described as a multitype compartmental model and as a branching process. Math. Biosci., 103(1), 115-138. · Zbl 0724.92010 · doi:10.1016/0025-5564(91)90094-Y
[24] Jackson, T. L., & Byrne, H. (2000). A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci., 164(1), 17-38. · Zbl 0947.92013 · doi:10.1016/S0025-5564(99)00062-0
[25] Khain, E., & Sander, L. M. (2006). Dynamics and pattern formation in invasive tumor growth. Phys. Rev. Lett., 96(18), 188103. · doi:10.1103/PhysRevLett.96.188103
[26] Kimmel, M., & Axelrod, D. E. (1990). Mathematical models of gene amplification with applications to cellular drug resistance tumorigenicity. Genetics, 125(3), 633-644.
[27] Komarova, N. (2006). Stochastic modeling of drug resistance in cancer. J. Theor. Biol., 239(3), 351-366. · Zbl 1445.92143 · doi:10.1016/j.jtbi.2005.08.003
[28] Komarova, N., & Wodarz, D. (2005). Drug resistance in cancer: principles of emergence and prevention. Proc. Natl. Acad. Sci. USA, 102(27), 9714-9719. · doi:10.1073/pnas.0501870102
[29] Kreso, A., O’Brien, C. A., van Galen, P., Gal, O. I., Notta, F., et al. (2013). Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 339(6119), 543-548. · doi:10.1126/science.1227670
[30] Laird, A. K. (1964). Dynamics of tumor growth. Br. J. Cancer, 18(3), 490-502. · doi:10.1038/bjc.1964.55
[31] Lavi, O., Gottesman, M. M., & Levy, D. (2012). The dynamics of drug resistance: a mathematical perspective. Drug Resist. Updat., 15(1-2), 90-97. · doi:10.1016/j.drup.2012.01.003
[32] Lavi, O., Greene, J. M., Levy, D., & Gottesman, M. M. (2013). The role of cell density and intratumoral heterogeneity in multidrug resistance. Cancer Res., 73(24), 7168-7175. · doi:10.1158/0008-5472.CAN-13-1768
[33] Lavi, O., Greene, J. M., Levy, D., & Gottesman, M. M. Simplifying the complexity of resistance heterogeneity in metastasis, Trends in Molecular Medicine (2014, accepted). · Zbl 1329.92055
[34] Ledzewicz, U., & Schattler, H. (2006). Drug resistance in cancer chemotherapy as an optimal control problem. Discrete Contin. Dyn. Syst., 6(1), 129-150. · Zbl 1088.92040
[35] Long, H., Han, H., Yang, B., & Wang, Z. (2003). Opposite cell density-dependence between spontaneous and oxidative stress-induced apoptosis in mouse fibroblast L-cells. Cell. Physiol. Biochem., 13(6), 401-414. · doi:10.1159/000075128
[36] Lorz, A., Mirrahimi, S., & Perthame, B. (2011). Dirac mass dynamics in multidimensional nonlocal parabolic equations. Commun. Partial. Differ. Equ., 36(6), 1071-1098. · Zbl 1229.35113 · doi:10.1080/03605302.2010.538784
[37] Lorz, A., Lorenzi, T., Hochberg, M., Clairambault, J., & Perthame, B. (2013). Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. Math. Model. Num. Anal., 47(2), 377-399. · Zbl 1274.92025 · doi:10.1051/m2an/2012031
[38] Magal, P., & Webb, G. F. (2000). Mutation, selection and recombination in a model of phenotype evolution. Discrete Contin. Dyn. Syst., 6(1), 221-236. · Zbl 1007.92027
[39] Marusyk, A., & Cancer, K. P. (2013). Cancer cell phenotypes, in fifty shades of grey. Science, 339(6119), 528-529. · doi:10.1126/science.1234415
[40] Michelson, S., & Slate, D. (1992). A mathematical model of the P-glycoprotein pump as a mediator of multidrug resistance. Bull. Math. Biol., 54(6), 1023-1038. · Zbl 0752.92014 · doi:10.1007/BF02460664
[41] Nagane, M., Coufal, F., Lin, H., Bögler, O., Cavenee, W. K., & Huang, H. J. (1996). A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res., 56(21), 5079-5086.
[42] Norton, L., & Simon, R. (1977a). Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep., 61(7), 1307-1317.
[43] Norton, L., & Simon, R. (1977b). The growth curve of an experimental tumor following radiotherapy. J. Natl. Cancer Inst., 58(6), 1735-1741.
[44] Norton, L., & Simon, R. (1986). The Norton-Simon hypothesis revisited. Cancer Treat. Rep., 70(1), 163-169.
[45] Panetta, J. C. (1998). A mathematical model of drug resistance: heterogeneous tumors. Math. Biosci., 147(1), 41-61. · Zbl 0887.92020 · doi:10.1016/S0025-5564(97)00080-1
[46] Perthame, B. (2007). Transport equations in biology, frontiers in mathematics. Basel: Birkhäuser. · Zbl 1185.92006
[47] Perthame, B., & Barles, G. (2008). Dirac concentrations in Lotka-Volterra parabolic PDEs. Indiana Univ. Math. J., 57(7), 3275-3301. · Zbl 1172.35005 · doi:10.1512/iumj.2008.57.3398
[48] Qiao, L., & Farrell, G. C. (1999). The effects of cell density, attachment substratum and dexamethasone on spontaneous apoptosis of rate hepatocytes in primary culture. In Vitro Cell. Dev. Biol., Anim., 35(7), 417-424. · doi:10.1007/s11626-999-0117-2
[49] Saeki, K., Yuo, A., Kato, M., Miyazono, K., Yazaki, Y., & Takaku, F. (1997). Cell density-dependent apoptosis in HL-60 cells, which is mediated by an unknown soluble factor, is inhibited by transforming growth factor beta1 and overexpression of Bcl-2. J. Biol. Chem., 272(32), 20003-20010. · doi:10.1074/jbc.272.32.20003
[50] Saunders, N. A., Simpson, F., Thompson, E. W., Hill, M. M., Endo-Munoz, L., et al. (2012). Role of intratumoral heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO J., 4(8), 675-684.
[51] Schuster, R., & Schuster, H. (1995). Reconstruction models for the Ehrlich ascites tumor of the mouse. Math. Pop. Dyn., 2, 335-348.
[52] Stein, A. M., Demuth, T., Mobley, D., Berens, M., & Sander, L. M. (2007). A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys. J., 921, 356-365. · doi:10.1529/biophysj.106.093468
[53] Tomasetti, C., & Levy, D. (2010). An elementary approach to modeling drug resistance in cancer. Math. Biosci. Eng., 7(4), 905-918. · Zbl 1259.92056 · doi:10.3934/mbe.2010.7.905
[54] Weaver, V. M., Lelièvre, S., Lakins, J. N., Chrenek, M. A., Jones, J. C., Giancotti, F., Werb, Z., & Bissell, M. J. (2002). Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2(3), 205-216. · doi:10.1016/S1535-6108(02)00125-3
[55] Zahir, N., & Weaver, V. M. (2004). Death in the third dimension: apoptosis regulation and tissue architecture. Curr. Opin. Genet. Dev., 14(1), 71-80. · doi:10.1016/j.gde.2003.12.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.