×

Top predators induce the evolutionary diversification of intermediate predator species. (English) Zbl 1343.92451

Summary: We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator’s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct.

MSC:

92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Abrams, P. A.; Matsuda, H., Effects of adaptive predatory and anti-predator behaviour in a two-prey-one-predator system, Evol. Ecol., 7, 312-326 (1993)
[2] Abrams, P. A., The adaptive dynamics of consumer choice, Am. Nat., 153, 1, 83-97 (1999)
[3] Abrams, P. A.; Ginzburg, L. R., The nature of predationprey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15, 337-341 (2000)
[4] Abrams, P. A.; Chen, X., The evolution of traits affecting resource acquisition and predator vulnerabilitycharacter displacement under real and apparent competition, Am. Nat., 160, 692-704 (2002)
[5] Brown, J. S.; Vincent, T. L., Organization of predator-prey communities as an evolutionary game, Evolution, 46, 1269-1283 (1992)
[6] Boudjellaba, H.; Sari, T., Oscillations in a prey-predator-superpredator system, J. Biol. Syst., 6, 17-33 (1998) · Zbl 0982.92030
[7] Bowers, R. G.; Hoyle, A.; White, A.; Boots, M., The geometric theory of adaptive evolutiontrade-off and invasion plots, J. Theor. Biol., 233, 363-377 (2005) · Zbl 1443.92125
[8] Christiansen, F. B., On conditions for evolutionary stability for a continuously varying character, Am. Nat., 138, 37-50 (1991)
[9] Cressman, R., CSS, NIS and dynamic stability for two-species behavioral models with continuous trait spaces, J. Theor. Biol., 262, 80-89 (2010) · Zbl 1403.91043
[10] Dieckmann, U.; Law, R., The dynamical theory of coevolutiona derivation from stochastic ecological processes, J. Math. Biol., 34, 579-612 (1996) · Zbl 0845.92013
[11] Dieckmann, U.; Doebeli, M., On the origin of species by sympatric speciation, Nature, 400, 354-357 (1999)
[12] Doebeli, M.; Dieckmann, U., Evolutionary branching and sympatric speciation caused by different types of ecological interactions, Am. Nat., 156, S77-S101 (2000)
[13] de Mazancourt, C.; Dieckmann, U., Trade-off geometries and frequency-dependent selection, Am. Nat., 164, 765-778 (2004)
[14] Diekmann, O.; Jabin, P. E.; Mischler, S.; Perthame, B., The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67, 257-271 (2005) · Zbl 1072.92035
[15] Dercole, F.; Rinaldi, S., Analysis of Evolutionary ProcessesThe Adaptative Dynamics Approach and its Applications (2008), Princeton University Press: Princeton University Press Princeton · Zbl 1305.92001
[16] Eshel, I., Evolutionary and continuous stability, J. Theor. Biol., 103, 99-111 (1983)
[17] Egas, M.; Dieckmann, U.; Sabelis, M. W., Evolution restricts the coexistence of specialists and generaliststhe role of trade-off structure, Am. Nat., 163, 518-531 (2004)
[18] Freedman, H. I.; Waltman, P., Mathematical analysis of some three-species food-chain models, Math. Biosci., 33, 257-276 (1977) · Zbl 0363.92022
[19] Gurney, W.; Nisbet, R. M., Ecological Dynamics (1998), Oxford University Press: Oxford University Press Oxford
[20] Geritz, S. A.H.; Kisdi, É.; Meszéna, G.; Metz, J. A.J., Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 35-57 (1998)
[21] Geritz, S. A.H.; Gyllenberg, M.; Jacobs, F. J.A.; Parvinen, K., Invasion dynamics and attractor inheritance, J. Math. Biol., 44, 548-560 (2002) · Zbl 0990.92029
[22] Geritz, S. A.H., Resident-invader dynamics and the coexistence of similar strategies, J. Math. Biol., 50, 67-82 (2005) · Zbl 1055.92042
[23] Geritz, S. A.H.; Kisdi, É.; Yan, P., Evolutionary branching and long-term coexistence of cycling predatorscritical function analysis, Theor. Pop. Biol., 71, 424-435 (2007) · Zbl 1122.92053
[24] Harrison, G. W., Global stability of food chains, Am. Nat., 114, 3, 455-457 (1979)
[25] Hastings, A.; Powell, T., Chaos in a three-species food chain, Ecology, 72, 3, 896-903 (1991)
[26] Holt, R. D.; Grover, J.; Tilman, D., Simple rules for interspecific dominance in systems with exploitative and apparent competition, Am. Nat., 144, 741-771 (1994)
[27] Hoyle, A.; Bowers, R. G.; White, A.; Boots, M., The influence of trade-off shape on evolutionary behaviour in classical ecological scenarios, J. Theor. Biol., 250, 498-511 (2008) · Zbl 1397.92498
[28] Kirlinger, G., Permanence of some ecological systems with several predator and one prey species, J. Math. Biol., 26, 217-232 (1988) · Zbl 0713.92025
[29] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press San Diego · Zbl 0777.34002
[30] Kisdi, É., Trade-off geometries and the adaptive dynamics of two co-evolving species, Evol. Ecol. Res., 8, 959-973 (2006)
[32] Leimar, O., Multidimensional convergence stability, Evol. Ecol. Res., 11, 191-208 (2009)
[33] Law, R.; Marrow, P.; Dieckmann, U., On evolution under asymmetric competition, Evol. Ecol., 11, 485-501 (1997)
[34] Landi, P.; Dercole, F.; Rinaldi, S., Branching scenarios in eco-evolutionary prey-predator models, SIAM J. Appl. Math., 73, 4, 1634-1658 (2013) · Zbl 1303.92083
[35] Metz, J. A.J.; Nisbet, R. M.; Geritz, S. A.H., How should we define fitness for general ecological scenarios?, Trends Ecol. Evol., 7, 198-202 (1992)
[36] Marrow, P.; Dieckmann, U.; Law, R., Evolutionary dynamics of predator-prey systemsan ecological perspective, J. Math. Biol., 34, 556-578 (1996) · Zbl 0845.92018
[37] Matsuda, H.; Abrams, P. A., Timid consumersself-extinction due to adaptive change in foraging and anti-predator effort, Theor. Popul. Biol., 45, 76-91 (1994) · Zbl 0794.92024
[38] Maynard Smith, J., Evolution and the Theory of Games (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0526.90102
[39] Ma, J. L.; Levin, S. A., The evolution of resource adaptationhow generalist and specialist consumers evolve, Bull. Math. Biol., 68, 1111-1123 (2006) · Zbl 1334.92295
[40] Meszéna, G.; Gyllenberg, M.; Jacobs, F. J.; Metz, J. A.J., Link between population dynamics and dynamics of Darwinian evolution, Phys. Rev. Lett. PRL, 95, 078105 (2005)
[41] Nowak, M. A.; Sigmund, K., Evolutionary dynamics of biological games, Science, 303, 793-799 (2004)
[42] Parvinen, K., Evolutionary suicide, Acta Biotheor., 53, 3, 241-264 (2005)
[43] So, J., A note on global stability and bifurcation phenomenon of a Lotka-Volterra food chain, J. Theor. Biol., 80, 185-187 (1979)
[44] Schluter, D., Experimental evidence that competition promotes divergence in adaptive radiation, Science, 266, 798-801 (1994)
[45] Schwinning, S.; Fox, G. A., Population dynamic consequences of competitive symmetry in annual plants, Oikos, 72, 422-432 (1995)
[46] Sun, C. J.; Loreau, M., Dynamics of a three-species food chain model with adaptive traits, Chaos, Solitons, Fractals, 41, 2812-2819 (2009) · Zbl 1198.34097
[47] White, A.; Bowers, R. G., Adaptive dynamics of Lotka-Volterra systems with trade-offsthe role of interspecific parameter dependence in branching, Math. Biosci., 193, 101-117 (2005) · Zbl 1062.92078
[48] Zu, J.; Wang, K. F.; Mimura, M., Evolutionary branching and evolutionarily stable coexistence of predator speciescritical function analysis, Math. Biosci., 231, 210-224 (2011) · Zbl 1219.92072
[49] Zu, J.; Wang, J. L., Adaptive evolution of attack ability promotes the evolutionary branching of predator species, Theor. Popul. Biol., 89, 12-23 (2013) · Zbl 1302.92120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.