×

Generalized Hyers-Ulam stability for general additive functional equations on non-Archimedean random Lie \(C^\ast\)-algebras. (English) Zbl 1499.39127

Summary: In this paper, using the fixed point method, we prove some results related to the generalized Hyers-Ulam stability of homomorphisms and derivations in non-Archimedean random \(C^\ast\)-algebras and non-Archimedean random Lie \(C^\ast\)-algebras for the generalized additive functional equation \[ \sum_{1 \leq i < j \leq n} f\left(\frac{x_i+x_j}{2} + \sum^{n-2}_{l=1,k_l\neq i,j} x_{k_l}\right) = \frac{(n-1)^2}{2} \sum^n_{i=1} f(x_i) \] where \(n \in \mathbb{N}\) is a fixed integer with \(n \geq 3\).

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
46L57 Derivations, dissipations and positive semigroups in \(C^*\)-algebras
Full Text: DOI

References:

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950), 64-66. · Zbl 0040.35501
[2] L. Cǎdariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346(2004), 43-52. · Zbl 1060.39028
[3] S. S. Chang, Y. J. Cho and S. M. Kang, Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, New York, 2001. · Zbl 1080.47054
[4] Y. J. Cho, C. Park and R. Saadati, Functional inequalities in non-Archimedean in Banach spaces, Appl. Math. Lett. 60(2010), 1994-2002. · Zbl 1205.39029
[5] Y. J. Cho, R. Saadati and J. Vahidi, Approximation of homomorphisms and derivations on non-Archimedean Lie C * -algebras via fixed point method, Discrete Dyn. Nat. Soc. 2012(2012), Article ID 373904, 9 pages. · Zbl 1248.39024
[6] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74(1968), 305-309. · Zbl 0157.29904
[7] P. Gȃvruţȃ, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436. · Zbl 0818.46043
[8] M. E. Gordji and Z. Alizadeh, Stability and superstability of ring homomorphisms on non-Archimedean Banach algebras, Abst. Appl. Anal. 2011(2011), Article ID 123656, 10 pages. · Zbl 1216.39035
[9] M. E. Gordji, H. Khodaei and M. Kamyar, Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces, Comput. Math. Appl. 62(2011), 2950-2960. · Zbl 1232.46068
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(1941), 222-224. · JFM 67.0424.01
[11] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several variables, Birkhäuser, Basel, 1998. · Zbl 0894.39012
[12] S. Y. Jang and R. Saadati, Approximation of the Jensen type functional equation in non-Archimedean C * -algebras, J. Comput. Anal. Appl. 18(2015), 472-491. · Zbl 1329.39032
[13] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011. · Zbl 1221.39038
[14] J. I. Kang and R. Saadati, Approximation of homomorphisms and derivations on non-Archimedean random Lie C * -algebras via fixed point method, J. Ineq. Appl. 2012(2012), Article ID 251. · Zbl 1279.39015
[15] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York, 2009. · Zbl 1178.39032
[16] H. A. Kenary, S. Y. Jang and C. Park, A fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory Appl. 2011(2011), Article ID 67. · Zbl 1278.39038
[17] H. A. Kenary, H. Rezaei, S. Talebzadeh and C. Park, Stability for the Jensen equation in C * -algebras: a fixed point alternative approach, Adv. Differ. Equ. 2012(2012), Article ID 17. · Zbl 1278.39039
[18] S. S. Kim, J. M. Rassias, Y. J. Cho and S. H. Kim, Stability of n-Lie homomorphisms and Jordan n-Lie homomorphisms on n-Lie algebras, J. Math. Phys. 54(2013), 053501; 10.1063/1.4803026. · Zbl 1366.39020 · doi:10.1063/1.4803026
[19] Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen’s equation, J. Math. Anal. Appl. 238(1999), 305-315. · Zbl 0933.39053
[20] D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343(2008), 567-572. · Zbl 1139.39040
[21] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst. 159(2008), 720-729. · Zbl 1178.46075
[22] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sciences 178(2008), 3791-3798. · Zbl 1160.46336
[23] A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy Sets Syst. 195(2012), 109-117. · Zbl 1261.46073
[24] F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional equation of n-Apollonius type in C * -algebras, Abst. Appl. Anal. 2008(2008), Article ID 672618, 13 pages. · Zbl 1159.47032
[25] A. Najati and A. Ranjbari, Stability of homomorphisms for a 3D Cauchy-Jensen type functional equation on C * -ternary algebras, J. Math. Anal. Appl. 341(2008), 62-79. · Zbl 1147.39010
[26] A. Najati, Fuzzy stability of a generalized quadratic functional equation, Commun. Korean Math. Soc. 25(2010), 405-417. · Zbl 1227.39026
[27] A. Najati and Y. J. Cho, Generalized Hyers-Ulam stability of the Pexiderized Cauchy functional equation in non-Archimedean spaces, Fixed Point Theory Appl. 2011(2011), Article ID 309026, 11 pages. · Zbl 1213.39018
[28] C. Park, Homomorphisms between Poisson JC * -algebras, Bull. Braz. Math. Soc. 36(2005), 79-97. · Zbl 1091.39007
[29] C. Park, Y. J. Cho and H. A. Kenary, Orthogonal stability of a generalized quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl. 14(2012), 526-535. · Zbl 1258.39015
[30] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300. · Zbl 0398.47040
[31] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, 2003. · Zbl 1047.39001
[32] J. M. Rassias and M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. 281(2003), 516-524. · Zbl 1028.39011
[33] J. M. Rassias, Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. 131(2007), 89-98. · Zbl 1112.39025
[34] J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-β-normed spaces, J. Math. Anal. Appl. 356(2009), 302-309. · Zbl 1168.39015
[35] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, 2011. · Zbl 1121.39301
[36] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland, New York, 1983. · Zbl 0546.60010
[37] A. N.Šerstnev, On the notion of a random normed space (in Russian), Dokl. Akad. Nauk. SSSR 149(1963), 280-283. · Zbl 0127.34902
[38] N. Shilkret, Non-Archimedean Banach algebras, PhD thesis, Polytechnic University, ProQuest LLC, 1968. · Zbl 0198.47501
[39] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964. · Zbl 0137.24201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.