×

A conjecture about molecular dynamics. (English) Zbl 1391.82050

Munthe-Kaas, Hans (ed.) et al., Mathematics and computation, a contemporary view. The Abel symposium 2006. Proceedings of the third Abel symposium, Alesund, Norway, May 25–27, 2006. Berlin: Springer (ISBN 978-3-540-68848-8/hbk). Abel Symposia 3, 95-108 (2008).
Summary: An open problem in numerical analysis is to explain why molecular dynamics works. The difficulty is that numerical trajectories are only accurate for very short times, whereas the simulations are performed over long time intervals. It is believed that statistical information from these simulations is accurate, but no one has offered a rigourous proof of this. In order to give mathematicians a clear goal in understanding this problem, we state a precise mathematical conjecture about molecular dynamics simulation of a particular system. We believe that if the conjecture is proved, we will then understand why molecular dynamics works.
For the entire collection see [Zbl 1148.00004].

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
37M05 Simulation of dynamical systems
65L20 Stability and convergence of numerical methods for ordinary differential equations
82D99 Applications of statistical mechanics to specific types of physical systems

References:

[1] Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids (1989), Oxford: Oxford University Press, Oxford · Zbl 0703.68099
[2] Bennetin, G.; Giorgilli, A., On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms, J. Stat. Phys., 74, 1117-1143 (1994) · Zbl 0842.58020 · doi:10.1007/BF02188219
[3] Cano, B.; Stuart, A. M.; Süli, E.; Warren, J. O., Stiff oscillatory systems, delta jumps and white noise, Found. Comput. Math., 1, 1, 69-99 (2001) · Zbl 1005.34033 · doi:10.1007/s10208001002
[4] E. Cancès, F. Legoll, and G. Stoltz. Theoretical and numerical comparison of some sampling methods for molecular dynamics. To appear, Math. Mod. Num. Anal. · Zbl 1138.82341
[5] Engle, R. D.; Skeel, R. D.; Drees, M., Monitoring energy drift with shadow Hamiltonians, J. Comput. Phys., 206, 2, 432-452 (2005) · Zbl 1070.65129 · doi:10.1016/j.jcp.2004.12.009
[6] Frenkel, D.; Smit, B., Understanding Molecular Simulation: From Algorithms to Applications (2002), London: Academic Press, London
[7] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2002), Berlin: Springer Series in Computational Mathematics, Berlin · Zbl 0994.65135
[8] Hayes, W.; Jackson, K., A Survey of Shadowing Methods for Numerical Solutions of Ordinary Differential Equations, Applied Numerical Mathematics, 53, 1-2, 299-321 (2005) · Zbl 1069.65075 · doi:10.1016/j.apnum.2004.08.011
[9] Hunt, T. J.; MacKay, R. S., Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor, Nonlinearity, 16, 4, 1499-1510 (2003) · Zbl 1040.37072 · doi:10.1088/0951-7715/16/4/318
[10] Liverani, C.; Szász, D., Interacting Particles, Hard Ball Systems and the Lorentz Gas, Hard Ball Systems and the Lorentz Gas (2000), Berlin: Springer, Berlin
[11] Reich, S., Backward error analysis for numerical integrators, SIAM J. Numer. Anal., 36, 5, 1549-1570 (1999) · Zbl 0935.65142 · doi:10.1137/S0036142997329797
[12] Sigurgeirsson, H.; Stuart, A. M., Statistics from computations, Foundations of computational mathematics (Oxford, 1999), 323-344 (2001), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0978.65118
[13] R. D. Skeel and P. F. Tupper, editors. Mathematical Issues in Molecular Dynamics. Banff International Research Station Reports. 2005.
[14] Leimkuhler, B.; Reich, S., Simulating Hamiltonian dynamics (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1069.65139
[15] LeBris, C., Computational chemistry from the perspective of numerical analysis, Acta Numer., 14, 363-444 (2005) · Zbl 1119.65390 · doi:10.1017/S096249290400025X
[16] Stuart, A. M.; Humphries, A. R., Dynamical Systems and Numerical Analysis (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0869.65043
[17] Stuart, A. M.; Warren, J. O., Analysis and Experiments for a Computational Model of a Heat Bath, J. Stat. Phys., 97, 687-723 (1999) · Zbl 0958.82001 · doi:10.1023/A:1004667325896
[18] Tupper, P. F., Ergodicity and the numerical simulation of Hamiltonian systems, SIAM J. Appl. Dyn. Syst., 4, 3, 563-587 (2005) · Zbl 1090.65139 · doi:10.1137/040603802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.