×

Gravitational-wave data analysis. Formalism and sample applications: the Gaussian Case. (English) Zbl 1316.83027

Summary: The article reviews the statistical theory of signal detection in application to analysis of deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for the theory of signal detection and parameter estimation are presented. Several tools needed for both theoretical evaluation of the optimal data analysis methods and for their practical implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix, false alarm and detection probabilities, \(\mathcal F\)-statistic, template placement, and fitting factor. These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms to efficiently implement the optimal data analysis techniques are discussed. Formulas are given for a general gravitational-wave signal that includes as special cases most of the deterministic signals of interest.
Update to the authors’ paper [Zbl 1071.83520]: Material of the previous version of the review was partially reorganized and updated, 46 new references were added.
1. Section 2 was rewritten and extended, several new references were added.
2. Some parts of the former Section 4 were moved to the present Section 3, which is now a brief general introduction to the statistical theory of signal detection and of estimation of signals parameters. Some new references were added.
3. The present Section 4 is a partially rewritten (using some new, more convenient notation) and extended version of the former Sections 4.3-4.9. The gravitational-wave signal considered here was generalized from a 4-amplitude-parameter case to an \(n\)-amplitude-parameter case, where n is arbitrary. New Section 4.1.1 about targeted searches was added, and new Section 4.4.1 on the covering problem was created with references to constructions of various grids of templates for searches of continuous gravitational waves.
4. The present Section 5 is an expanded version of the former Section 4.10 with addition of several recent references.
5. The present Section 6 is an expanded version of the former Section 4.11 with new discussion of optimal filtering for non-stationary data and description of a test (Grubbs’ test) to detect outliers in data.

MSC:

83C35 Gravitational waves
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83B05 Observational and experimental questions in relativity and gravitational theory

Citations:

Zbl 1071.83520

Software:

fminsearch

References:

[1] Abadie, J.; ; , Beating the spin-down limit on gravitational wave emission from the Vela pulsar, Astrophys. J., 737, 93 (2011)
[2] Abbott, B.; , Analysis of LIGO data for gravitational waves from binary neutron stars, Phys. Rev. D, 69, 122001 (2004)
[3] Abbott, B.; , First upper limits from LIGO on gravitational wave bursts, Phys. Rev. D, 69, 102001 (2004)
[4] Abbott, B.; , Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors, Phys. Rev. D, 69, 082004 (2004)
[5] Adler, Rj, The Geometry of Random Fields (1981), Chichester; New York: Wiley, Chichester; New York · Zbl 0478.60059
[6] Adler, Rj; Taylor, Je, Random Fields and Geometry (2007), New York: Springer, New York · Zbl 1149.60003
[7] Ajith, P.; Bose, S., Estimating the parameters of nonspinning binary black holes using ground-based gravitational-wave detectors: Statistical errors, Phys. Rev. D, 79, 084032 (2009)
[8] Allen, B.; Marck, J-A; Lasota, J-P, The Stochastic Gravity-Wave Background: Sources and Detection, Relativistic Gravitation and Gravitational Radiation, 373-418 (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0928.53044
[9] Allen, B., χ^2 time-frequency discriminator for gravitational wave detection, Phys. Rev. D, 71, 062001 (2005)
[10] Allen, B.; Creighton, De; Flanagan, Éé; Romano, Jd, Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses, Phys. Rev. D, 65, 122002 (2002)
[11] Allen, B.; Creighton, De; Flanagan, Éé; Romano, Jd, Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise. II. Bayesian analyses, Phys. Rev. D, 67, 122002 (2003)
[12] Allen, B., Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy, Phys. Rev. Lett., 83, 1498-1501 (1999)
[13] Apostolatos, Ta, Search templates for gravitational waves from precessing, inspiraling binaries, Phys. Rev. D, 52, 605-620 (1995)
[14] Armstrong, J.W., “Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking”, Living Rev. Relativity, 9, lrr-2006-1, (2006). URL (accessed 30 June 2011): http://www.livingreviews.org/lrr-2006-1. (Cited on page 7.) · Zbl 1255.83003
[15] Armstrong, Jw; Estabrook, Fb; Tinto, M., Time-Delay Interferometry for Space-Based Gravitational Wave Searches, Astrophys. J., 527, 814-826 (1999)
[16] Arnaud, N., Coincidence and coherent data analysis methods for gravitational wave bursts in a network of interferometric detectors, Phys. Rev. D, 68, 102001 (2003)
[17] Arun, Kg; Iyer, Br; Sathyaprakash, Bs; Sundararajan, Pa, Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case, Phys. Rev. D, 71, 084008 (2005)
[18] Astone, P.; Borkowski, Km; Jaranowski, P.; Królak, A., Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search, Phys. Rev. D, 65, 042003 (2002)
[19] Astone, P.; Borkowski, Km; Jaranowski, P.; Królak, A.; Pietka, M., Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search, Phys. Rev. D, 82, 022005 (2010)
[20] Astone, P.; D’Antonio, S.; Frasca, S.; Palomba, C., A method for detection of known sources of continuous gravitational wave signals in non-stationary data, Class. Quantum Grav., 27, 194016 (2010) · Zbl 1202.83031
[21] Astone, P.; Lobo, A.; Schutz, Bf, Coincidence experiments between interferometric and resonant bar detectors of gravitational waves, Class. Quantum Grav., 11, 2093-2112 (1994)
[22] Astone, P., Long-term operation of the Rome ‘Explorer’ cryogenic gravitational wave detector, Phys. Rev. D, 47, 362-375 (1993)
[23] Astone, P., All-sky upper limit for gravitational radiation from spinning neutron stars, Class. Quantum Grav., 20, S665-S676 (2003)
[24] Astone, P.; , Methods and results of the IGEC search for burst gravitational waves in the years 1997-2000, Phys. Rev. D, 68, 022001 (2003)
[25] Balasubramanian, R.; Dhurandhar, Sv, Estimation of parameters of gravitational waves from coalescing binaries, Phys. Rev. D, 57, 3408-3422 (1998)
[26] Balasubramanian, R.; Sathyaprakash, Bs; Dhurandhar, Sv, Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters, Phys. Rev. D, 53, 3033-3055 (1996)
[27] Baskaran, D.; Grishchuk, Lp, Components of the gravitational force in the field of a gravitational wave, Class. Quantum Grav., 21, 4041-4061 (2004) · Zbl 1061.83018
[28] Bayes, T., An essay towards solving a problem in doctrine of chances, Philos. Trans. R. Soc. London, 53, 293-315 (1763)
[29] Berti, E.; Buonanno, A.; Will, Cm, Estimating spinning binary parameters and testing alternative theories of gravity with LISA, Phys. Rev. D, 71, 084025 (2005)
[30] Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [gr-qc/0202016]. URL (accessed 10 June 2007): http://www.livingreviews.org/lrr-2006-4. (Cited on pages 5 and 13.) · Zbl 1316.83004
[31] Bonazzola, S.; Gourgoulhon, E., Gravitational waves from pulsars: emission by the magnetic-field-induced distortion, Astron. Astrophys., 312, 675-690 (1996)
[32] Bose, S.; Dayanga, T.; Ghosh, S.; Talukder, D., A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors, Class. Quantum Grav., 28, 134009 (2011)
[33] Brady, Pr; Creighton, T.; Cutler, C.; Schutz, Bf, Searching for periodic sources with LIGO, Phys. Rev. D, 57, 2101-2116 (1998)
[34] Brooks, C., Introductory Econometrics for Finance (2002), Cambridge; New York: Cambridge University Press, Cambridge; New York · Zbl 1015.91001
[35] Buonanno, A.; Chen, Y.; Vallisneri, M., Detection template families for gravitational waves from the final stages of binary-black-hole inspirals: Nonspinning case, Phys. Rev. D, 67, 024016 (2003)
[36] Cokelaer, T., Parameter estimation of inspiralling compact binaries in ground-based detectors: comparison between Monte Carlo simulations and the Fisher information matrix, Class. Quantum Grav., 25, 184007 (2008) · Zbl 1151.85332
[37] Conover, Wj, Practical Nonparametric Statistics (1998), New York: Wiley, New York
[38] Conway, Jh; Sloane, Nja, Sphere Packings, Lattices and Groups (1999), New York: Springer, New York · Zbl 0915.52003
[39] Croce, Rp; Demma, T.; Longo, M.; Marano, S.; Matta, V.; Pierro, V.; Pinto, Im, Correlator bank detection of gravitational wave chirps — False-alarm probability, template density, and thresholds: Behind and beyond the minimal-match issue, Phys. Rev. D, 70, 122001 (2004)
[40] Cutler, C., Angular resolution of the LISA gravitational wave detector, Phys. Rev. D, 57, 7089-7102 (1998)
[41] Cutler, C.; Flanagan, Éé, Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?, Phys. Rev. D, 49, 2658-2697 (1994)
[42] Cutler, C.; Schutz, Bf, Generalized \({\mathcal F}\)-statistic: Multiple detectors and multiple gravitational wave pulsars, Phys. Rev. D, 72, 063006 (2005)
[43] Cutler, C., The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Compact Binaries, Phys. Rev. Lett., 70, 2984-2987 (1993)
[44] Davis, Mha; Schutz, Bf, A Review of Statistical Theory of Signal Detection, Gravitational Wave Data Analysis, 73-94 (1989), Dordrecht; Boston: Kluwer, Dordrecht; Boston
[45] Dhurandhar, Sv; Sathyaprakash, Bs, Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise, Phys. Rev. D, 49, 1707-1722 (1994)
[46] Dhurandhar, Sv; Schutz, Bf, Filtering coalescing binary signals: Issues concerning narrow banding, thresholds, and optimal sampling, Phys. Rev. D, 50, 2390-2405 (1994)
[47] Estabrook, Fb; Wahlquist, Hd, Response of Doppler spacecraft tracking to gravitational radiation, Gen. Relativ. Gravit., 6, 439-447 (1975)
[48] Finn, Ls, Detection, measurement and gravitational radiation, Phys. Rev. D, 46, 5236-5249 (1992)
[49] Finn, Ls, Aperture synthesis for gravitational-wave data analysis: Deterministic sources, Phys. Rev. D, 63, 102001 (2001)
[50] Finn, Ls; Chernoff, Df, Observing binary inspiral in gravitational radiation: One interferometer, Phys. Rev. D, 47, 2198-2219 (1993)
[51] Fisz, M., Probability Theory and Mathematical Statistics (1967), New York: Wiley, New York · Zbl 0153.47602
[52] Flanagan, Éé; Hughes, Sa, Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates, Phys. Rev. D, 57, 4566-4587 (1998)
[53] Freise, A. and Strain, K.A., “Interferometer Techniques for Gravitational-Wave Detection”, Living Rev. Relativity, 13, lrr-2010-1, (2010). URL (accessed 30 June 2011): http://www.livingreviews.org/lrr-2010-1. (Cited on page 7.) · Zbl 1215.83006
[54] Giampieri, G., On the antenna pattern of an orbiting interferometer, Mon. Not. R. Astron. Soc., 289, 185-195 (1997)
[55] Grubbs, Fe, Procedures for Detecting Outlying Observations in Samples, Technometrics, 11, 1-21 (1969)
[56] Gürsel, Y.; Tinto, M., Near optimal solution to the inverse problem for gravitational-wave bursts, Phys. Rev. D, 40, 3884-3938 (1989)
[57] Harry, Iw; Allen, B.; Sathyaprakash, Bs, Stochastic template placement algorithm for gravitational wave data analysis, Phys. Rev. D, 80, 104014 (2009)
[58] Helstrom, Cw, Statistical Theory of Signal Detection (1968), Oxford; New York: Pergamon Press, Oxford; New York
[59] Hinich, Mj, Testing for Gaussianity and linearity of a stationary time series, J. Time Series Anal., 3, 169-176 (1982) · Zbl 0502.62079
[60] Hughes, Sa, Untangling the merger history of massive black holes with LISA, Mon. Not. R. Astron. Soc., 331, 805-816 (2002)
[61] Hughes, Sa; Menou, K., Golden binary gravitational-wave sources: Robust probes of strong-field gravity, Astrophys. J., 623, 689-699 (2005)
[62] Jaranowski, P.; Kokkotas, Kd; Królak, A.; Tsegas, G., On the estimation of parameters of the gravitational-wave signal from a coalescing binary by a network of detectors, Class. Quantum Grav., 13, 1279-1307 (1996) · Zbl 0875.83017
[63] Jaranowski, P.; Królak, A., Optimal solution to the inverse problem for the gravitational wave signal of a coalescing compact binary, Phys. Rev. D, 49, 1723-1739 (1994)
[64] Jaranowski, P.; Królak, A., Data analysis of gravitational-wave signals from spinning neutron stars. II. Accuracy of estimation of parameters, Phys. Rev. D, 59, 063003 (1999)
[65] Jaranowski, P.; Królak, A., Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics and computational requirements, Phys. Rev. D, 61, 062001 (2000)
[66] Jaranowski, P.; Królak, A., Analysis of Gravitational-Wave Data (2009), Cambridge; New York: Cambridge University Press, Cambridge; New York
[67] Jaranowski, P.; Królak, A., Searching for gravitational waves from known pulsars using the F and G statistics, Class. Quantum Grav., 27, 194015 (2010) · Zbl 1202.83033
[68] Jaranowski, P.; Królak, A.; Schutz, Bf, Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection, Phys. Rev. D, 58, 063001 (1998)
[69] Judge, Gg; Hill, Rc; Griffiths, We; Lutkepohl, H.; Lee, T-C, The Theory and Practice of Econometrics (1980), New York: Wiley, New York · Zbl 0516.62093
[70] Kafka, P.; De Sabbata, V.; Weber, J., Optimal Detection of Signals through Linear Devices with Thermal Noise Sources and Application to the Munich-Frascati Weber-Type Gravitational Wave Detectors, Topics in Theoretical and Experimental Gravitation Physics, 161 (1977), New York: Plenum Press, New York
[71] Kassam, Sa, Signal Detection in Non-Gaussian Noise (1988), New York: Springer, New York
[72] Kendall, M.; Stuart, A., The Advanced Theory of Statistics. Vol. 2: Inference and Relationship (1979), London: C. Griffin, London · Zbl 0416.62001
[73] Kokkotas, Kd; Królak, A.; Tsegas, G., Statistical analysis of the estimators of the parameters of the gravitational-wave signal from a coalescing binary, Class. Quantum Grav., 11, 1901-1918 (1994)
[74] Kotelnikov, Va, The Theory of Optimum Noise Immunity (1959), New York: McGraw-Hill, New York · Zbl 0087.33105
[75] Krolak, A.; Kokkotas, Kd; Schäfer, G., Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary, Phys. Rev. D, 52, 2089-2111 (1995)
[76] Królak, A.; Lobo, Ja; Meers, Bj, Estimation of the parameters of the gravitational-wave signal of a coalescing binary system, Phys. Rev. D, 48, 3451-3462 (1993)
[77] Królak, A.; Schutz, Bf, Coalescing binaries — Probe of the universe, Gen. Relativ. Gravit., 19, 1163-1171 (1987)
[78] Królak, A.; Tinto, M.; Vallisneri, M., Optimal filtering of the LISA data, Phys. Rev. D, 70, 022003 (2004)
[79] Lagarias, Jc; Reeds, Ja; Wright, Mh; Wright, Pe, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optimiz., 9, 112-147 (1998) · Zbl 1005.90056
[80] Lehmann, El, Testing Statistical Hypotheses (1959), New York: Wiley, New York · Zbl 0089.14102
[81] Lehmann, El, Theory ofPoint Estimation (1983), New York: Wiley, New York · Zbl 0522.62020
[82] Lehmann, El; Casella, G., Theory of Point Estimation (1998), New York: Springer, New York · Zbl 0916.62017
[83] Lehmann, El; Romano, Jp, Testing Statistical Hypotheses (2005), New York: Springer, New York · Zbl 1076.62018
[84] Liptser, Rs; Shiryaev, An, Statistics of Random Processes (1977), New York: Springer, New York · Zbl 0364.60004
[85] LISA: Pre-Phase A Report, Second Edition (1998), Garching: Max-Planck-Institut für Quantenoptik, Garching
[86] Manca, Gm; Vallisneri, M., Cover art: Issues in the metric-guided and metric-less placement of random and stochastic template banks, Phys. Rev. D, 81, 024004 (2010)
[87] Mcdonough, Rn; Whalen, Ad, Detection of Signals in Noise (1995), San Diego: Academic Press, San Diego
[88] Mcnabb, Jwc, Overview of the BlockNormal event trigger generator, Class. Quantum Grav., 21, S1705-S1710 (2004) · Zbl 1170.83364
[89] Messenger, C.; Prix, R.; Papa, Ma, Random template banks and relaxed lattice coverings, Phys. Rev. D, 79, 104017 (2009)
[90] Meyer, C., Matrix Analysis and Applied Linear Algebra (2000), Philadelphia: SIAM, Philadelphia · Zbl 0962.15001
[91] Misner, Cw; Thorne, Ks; Wheeler, Ja, Gravitation (1973), San Francisco: W.H. Freeman, San Francisco
[92] Mohanty, Sd, Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: Extension to post-Newtonian waveforms, Phys. Rev. D, 57, 630-658 (1998)
[93] Mohanty, Sd, A robust test for detecting non-stationarity in data from gravitational wave detectors, Phys. Rev. D, 61, 122002 (2000)
[94] Mohanty, Sd; Dhurandhar, Sv, Hierarchical search strategy for the detection of gravitational waves from coalescing binaries, Phys. Rev. D, 54, 7108-7128 (1996)
[95] Mohanty, Sd; Márka, S.; Rahkola, R.; Mukherjee, S.; Leonor, I.; Frey, R.; Cannizzo, J.; Camp, J., Search algorithm for a gravitational wave signal in association with gamma ray burst GRB030329 using the LIGO detectors, Class. Quantum Grav., 21, S1831-S1837 (2004) · Zbl 1170.83366
[96] Mukhopadhyay, H.; Sago, N.; Tagoshi, H.; Dhurandhar, Sv; Takahashi, H.; Kanda, N., Detecting gravitational waves from inspiraling binaries with a network of detectors: Coherent versus coincident strategies, Phys. Rev. D, 74, 083005 (2006)
[97] Mukhopadhyay, H.; Tagoshi, H.; Dhurandhar, Sv; Kanda, N., Detecting gravitational waves from inspiraling binaries with a network of geographically separated detectors: Coherent versus coincident strategies, Phys. Rev. D, 80, 123019 (2009)
[98] Nicholson, D.; Vecchio, A., Bayesian bounds on parameter estimation accuracy for compact coalescing binary gravitational wave signals, Phys. Rev. D, 57, 4588-4599 (1998)
[99] Nicholson, D., Results of the first coincident observations by two laser-interferometric gravitational wave detectors, Phys. Lett. A, 218, 175-180 (1996)
[100] Niebauer, Tm; Rüdiger, A.; Schilling, R.; Schnupp, L.; Winkler, W.; Danzmann, K., Pulsar search using data compression with the Garching gravitational wave detector, Phys. Rev. D, 47, 3106-3123 (1993)
[101] O’Hagan, A.; Forster, J., Kendall’s Advanced Theory of Statistics. Vol. IIB: Bayesian Inference (2004), London: E. Arnold, London · Zbl 1058.62002
[102] Owen, Bj, Search templates for gravitational waves from inspiraling binaries: Choice of template spacing, Phys. Rev. D, 53, 6749-6761 (1996)
[103] Pai, A.; Dhurandhar, S.; Bose, S., A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors, Phys. Rev. D, 64, 042004 (2001)
[104] Pisarski, A.; Jaranowski, P.; Pietka, M., Banks of templates for directed searches of gravitational waves from spinning neutron stars, Phys. Rev. D, 83, 043001 (2011)
[105] Pitkin, M., Reid, S., Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 14, lrr-2011-5, (2011). URL (accessed 18 July 2011): http://www.livingreviews.org/lrr-2011-5. (Cited on page 7.) · Zbl 1316.83010
[106] Poisson, E.; Will, Cm, Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian wave forms, Phys. Rev. D, 52, 848-855 (1995)
[107] Poor, Hv, An Introduction to Signal Detection and Estimation (1994), New York: Springer, New York · Zbl 0811.94001
[108] Prince, Ta; Tinto, M.; Larson, Sl; Armstrong, Jw, LISA optimal sensitivity, Phys. Rev. D, 66, 122002 (2002)
[109] Prix, P.; Krishnan, B., Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics, Class. Quantum Grav., 26, 204013 (2009) · Zbl 1179.83039
[110] Prix, R., The search for continuous gravitational waves: Metric of the multi-detector \({\mathcal F}\)-statistic, Phys. Rev. D, 75, 023004 (2007)
[111] Prix, R., Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces, Class. Quantum Grav., 24, S481-S490 (2007) · Zbl 1206.83021
[112] Rajesh Nayak, K.; Pai, A.; Dhurandhar, Sv; Vinet, J-Y, Improving the sensitivity of LISA, Class. Quantum Grav., 20, 1217-1231 (2003) · Zbl 1044.83509
[113] Rakhmanov, M., Response of test masses to gravitational waves in the local Lorentz gauge, Phys. Rev. D, 71, 084003 (2005)
[114] Rakhmanov, M., On the round-trip time for a photon propagating in the field of a plane gravitational wave, Class. Quantum Grav., 26, 155010 (2009) · Zbl 1172.83309
[115] Rakhmanov, M.; Romano, Jd; Whelan, Jt, High-frequency corrections to the detector response and their effect on searches for gravitational waves, Class. Quantum Grav., 25, 184017 (2008)
[116] Rife, Dc; Boorstyn, Rr, Single tone parameter estimation from discrete-time observations, IEEE Trans. Inform. Theory, 20, 591-598 (1974) · Zbl 0302.62045
[117] Robinson, Cak; Sathyaprakash, Bs; Sengupta, As, Geometric algorithm for efficient coincident detection of gravitational waves, Phys. Rev. D, 78, 062002 (2008)
[118] Rogan, A.; Bose, S., Optimal statistic for detecting gravitational wave signals from binary inspirals with LISA, Class. Quantum Grav., 21, S1607-S1624 (2004) · Zbl 1195.83032
[119] Röover, C., Random template placement and prior information, J. Phys.: Conf. Ser., 228, 012008 (2010)
[120] Rubbo, Lj; Cornish, Nj; Poujade, O., Forward modeling of space-borne gravitational wave detectors, Phys. Rev. D, 69, 082003 (2004)
[121] Sathyaprakash, Bs; Dhurandhar, Sv, Choice of filters for the detection of gravitational waves from coalescing binaries, Phys. Rev. D, 44, 3819-3834 (1991)
[122] Schutz, Bf, Determining the nature of the Hubble constant, Nature, 323, 310-311 (1986)
[123] Schutz, Bf, Gravitational Wave Data Analysis (1989), Dordrecht; Boston: Kluwer, Dordrecht; Boston
[124] Schutz, Bf; Blair, Dg, Data Processing, Analysis and Storage for Interferometric Antennas, The Detection of Gravitational Waves, 406-452 (1991), Cambridge; New York: Cambridge University Press, Cambridge; New York
[125] Schutz, Bf, Networks of gravitational wave detectors and three figures of merit, Class. Quantum Grav., 28, 125023 (2011) · Zbl 1222.83056
[126] Schutz, Bf; Tinto, M., Antenna patterns of interferometric detectors of gravitational waves — I. Linearly polarized waves, Mon. Not. R. Astron. Soc., 224, 131-154 (1987)
[127] Sengupta, Sa; Dhurandhar, Sv; Lazzarini, A., Faster implementation of the hierarchical search algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D, 67, 082004 (2003)
[128] Seto, N., Effects of finite armlength of LISA on analysis of gravitational waves from massive-black-holes binaries, Phys. Rev. D, 66, 122001 (2002)
[129] Seto, N., Gravitational wave astrometry for rapidly rotating neutron stars and estimation of their distances, Phys. Rev. D, 71, 123002 (2005)
[130] Stuart, A.; Ord, Jk, Kendall’s Advanced Theory of Statistics. Vol. I: Distribution Theory (1994), London: E. Arnold, London · Zbl 0880.62012
[131] Stuart, A.; Ord, Jk; Arnold, S., Kendall’s Advanced Theory of Statistics. Vol. IIA: Classical Inference and the Linear Model (1999), London: E. Arnold, London
[132] Table of Q Functions, RAND Research Memorandum, M-339, (U.S. Air Force, Rand Corporation, Santa Monica, 1950). (Cited on page 23.)
[133] Tagoshi, H.; , First search for gravitational waves from inspiraling compact binaries using TAMA300 data, Phys. Rev. D, 63, 062001 (2001)
[134] Tanaka, T.; Tagoshi, H., Use of new coordinates for the template space in hierarchical search for gravitational waves from inspiraling binaries, Phys. Rev. D, 62, 082001 (2000)
[135] Thorne, Ks; Hawking, Sw; Israel, W., Gravitational radiation, Three Hundred Years of Gravitation, 330-458 (1987), Cambridge; New York: Cambridge University Press, Cambridge; New York · Zbl 0966.83515
[136] Tinto, M.; Armstrong, Jw, Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation, Phys. Rev. D, 59, 102003 (1999)
[137] Tinto, M. and Dhurandhar, S.V., “Time-Delay Interferometry”, Living Rev. Relativity, 8, lrr-2005-4, (2005). URL (accessed 30 June 2011): http://www.livingreviews.org/lrr-2005-4. (Cited on page 7.) · Zbl 1206.83006
[138] Vallisneri, M., Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects, Phys. Rev. D, 77, 042001 (2008)
[139] Van Trees, Hl, Detection, Estimation and Modulation Theory. Part 1: Detection, Estimation, and Linear Modulation Theory (1968), New York: Wiley, New York · Zbl 0202.18002
[140] Vecchio, A., LISA observations of rapidly spinning massive black hole binary systems, Phys. Rev. D, 70, 042001 (2004)
[141] Vinet, J.-Y., “On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Inter-ferometric Detectors”, Living Rev. Relativity, 12, lrr-2009-5, (2009). URL (accessed 30 June 2011): http://www.livingreviews.org/lrr-2009-5. (Cited on page 7.) · Zbl 1215.83013
[142] Vitale, S.; Zanolin, M., Parameter estimation from gravitational waves generated by nonspinning binary black holes with laser interferometers: Beyond the Fisher information, Phys. Rev. D, 82, 124065 (2010)
[143] Wainstein, La; Zubakov, Vd, Extraction of Signals from Noise (1962), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0103.35707
[144] Weber, J., Evidence for Discovery of Gravitational Radiation, Phys. Rev. Lett., 22, 1320-1324 (1969)
[145] Wong, E., Introduction to Random Processes (1983), New York: Springer, New York · Zbl 0504.93002
[146] Wong, E.; Hajek, B., Stochastic Processes in Engineering Systems (1985), New York: Springer, New York · Zbl 0545.60003
[147] Woodward, Pm, Probability and Information Theory with Applications to Radar (1953), London: Pergamon Press, London · Zbl 0052.36503
[148] Zanolin, M.; Vitale, S.; Makris, N., Application of asymptotic expansions for maximum likelihood estimators errors to gravitational waves from binary mergers: The single interferometer case, Phys. Rev. D, 81, 124048 (2010)
[149] Zieliński, R.; Królak, A., Theory of parameter estimation, Mathematics of Gravitation. Part II: Gravitational Wave Detection, 209-220 (1997), Warsaw, Poland: Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland · Zbl 0894.62025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.