×

Heights of algebraic numbers modulo multiplicative group actions. (English) Zbl 1235.11066

Let \(K\) be a number field, and let \(G\) be a subgroup of the multiplicative group of \(K\). Silverman defined the \(G\)-height of an algebraic number \(\theta\) by the formula \(\mathcal{H}(\theta,G):=\inf H(g^{1/n} \theta)\), where \(H\) is the usual absolute height and the infimum is taken over every \(g \in G\) and over every positive integer \(n\). Let \(K^1\) be the kernel of the norm map from \(K^*\) to \({\mathbb Q}^*\), and let \(E_K\) be the group of units of \(K\). Then \(\{1\} \subset E_K \subset K^1 \subset K^*\), and so \[ H(\theta) \geq \mathcal{H}(\theta,E_K) \geq \mathcal{H}(\theta, K^1) \geq \mathcal{H}(\theta,K^*). \] The formula involving a product over the archimedean places of \(K(\theta)\) for \(\mathcal{H}(\theta,E_K)\) was established by A.-M. Bergé and J. Martinet [Sémin. Théor. Nombres, Univ. Bordeaux I 1987/1988, Exp. No. 11, 28 p. (1988; Zbl 0699.12013)]. The authors find similar formulas for \(\mathcal{H}(\theta, K^1)\) and \(\mathcal{H}(\theta,K^*)\) and show that \(K^1\)-height (resp. \(K^*\)-height) is equal to \(1\) if and only if \(\theta^n \in K^1\) (resp. \(\theta^n \in K^*\)) for some positive integer \(n\).

MSC:

11G50 Heights
11R04 Algebraic numbers; rings of algebraic integers

Citations:

Zbl 0699.12013

References:

[1] A.M. Bergé, J. Martinet, Minorations de hauteurs et petits régulateurs relatifs, Sém. Théorie des Nombres de Bordeaux, 1987-1988, exposé 11, 1988; A.M. Bergé, J. Martinet, Minorations de hauteurs et petits régulateurs relatifs, Sém. Théorie des Nombres de Bordeaux, 1987-1988, exposé 11, 1988 · Zbl 0699.12013
[2] Bergé, A. M.; Martinet, J., Notions relatives de régulateurs et de hauteurs, Acta Arith., 54, 156-170 (1989) · Zbl 0642.12011
[3] de la Maza, A. C., Counting points of bounded relative height, Mathematika, 50, 125-152 (2003) · Zbl 1080.11077
[4] Ghate, E.; Hironaka, E., The arithmetic and geometry of Salem numbers, Bull. Amer. Math. Soc. (N.S.), 38, 293-314 (2001) · Zbl 0999.11064
[5] Hindry, M.; Silverman, J., Diophantine Geometry: An Introduction (2000), Springer: Springer Berlin · Zbl 0948.11023
[6] Lang, S., Algebraic Number Theory (1970), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0211.38404
[7] Lang, S., Fundamentals of Diophantine Geometry (1983), Springer: Springer Berlin · Zbl 0528.14013
[8] Schanuel, S., Heights in number fields, Bull. Soc. Math. France, 107, 433-449 (1979) · Zbl 0428.12009
[9] Smyth, C. J., On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London Math. Soc., 3, 169-175 (1971) · Zbl 0235.12003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.