×

Conjugate algebraic numbers close to a symmetric set. (English. Russian original) Zbl 1092.11040

St. Petersbg. Math. J. 16, No. 6, 1013-1016 (2005); translation from Algebra Anal. 16, No. 6, 123-127 (2004).
It has been shown by Th. Motzkin [Bull. Am. Math. Soc. 53, 156–162 (1947; Zbl 0032.24702)] that if \(\{z_1,\dots, z_{n-1}\}\) is a set of complex numbers, closed under conjugation, then for every \(\epsilon>0\) there exists a monic polynomial \(P(X)\) of degree \(n\), with rational integral coefficients, irreducible over the rationals, such that if its roots \(w_1,\dots,w_n\) are suitably arranged, then for \(1\leq i\leq n-1\) one has \(| z_i-w_i| \leq\epsilon\). The author presents a new proof of this result, leading to an explicit construction of \(P(X)\).

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11D75 Diophantine inequalities
11J25 Diophantine inequalities
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)

Citations:

Zbl 0032.24702
Full Text: DOI

References:

[1] Artūras Dubickas, On intervals containing full sets of conjugates of algebraic integers, Acta Arith. 91 (1999), no. 4, 379 – 386. · Zbl 0935.11037
[2] A. Dubickas, The Remak height for units, Acta Math. Hungar. 97 (2002), no. 1-2, 1 – 13. · Zbl 1059.11062 · doi:10.1023/A:1020822326977
[3] Veikko Ennola, Conjugate algebraic integers in an interval, Proc. Amer. Math. Soc. 53 (1975), no. 2, 259 – 261. · Zbl 0286.12001
[4] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249. · JFM 49.0047.01
[5] M. Fekete and G. Szegö, On algebraic equations with integral coefficients whose roots belong to a given point set, Math. Z. 63 (1955), 158 – 172. · Zbl 0066.27002 · doi:10.1007/BF01187931
[6] K. Győry, On the irreducibility of neighbouring polynomials, Acta Arith. 67 (1994), no. 3, 283 – 294. · Zbl 0814.11050
[7] J. McKee and C. J. Smyth, There are Salem numbers of every trace, Bull. London Math. Soc. 37 (2005), 25-36. · Zbl 1166.11349
[8] Th. Motzkin, From among \? conjugate algebraic integers, \?-1 can be approximately given, Bull. Amer. Math. Soc. 53 (1947), 156 – 162. · Zbl 0032.24702
[9] Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN — Polish Scientific Publishers, Warsaw, 1974. Monografie Matematyczne, Tom 57. · Zbl 0276.12002
[10] Raphael M. Robinson, Intervals containing infinitely many sets of conjugate algebraic integers, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 305 – 315.
[11] Raphael M. Robinson, Intervals containing infinitely many sets of conjugate algebraic units, Ann. of Math. (2) 80 (1964), 411 – 428. · Zbl 0156.27905 · doi:10.2307/1970656
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.