×

Conformal restriction of Brownian excursion with darning. (English) Zbl 1420.60092

Summary: Let \( E^\ast_t \) be a two-dimensional Brownian excursion with darning on a finitely connected domain. Using Koebe’s theorem and conformal invariance of Brownian motion with darning we derive that a two-sided restriction measure exists for \( E^\ast_t \). Based on the existence of the two-sided restriction measure, we show that \( E^\ast_t \) possesses conformal restriction property, extending the conformal restriction of the Brownian excursion for a simply connected domain.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
60J65 Brownian motion
30C20 Conformal mappings of special domains
Full Text: DOI

References:

[1] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel JMath, 118, 221-288 (2000) · Zbl 0968.60093 · doi:10.1007/BF02803524
[2] Smirnov, S., Conformal invariance in random cluster models I: Holomorphic fermions in the Ising model, Ann Math, 172, 2, 1435-1467 (2010) · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1441
[3] Smirnov, S., Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C R Acad Sci Paris Sér I Math, 333, 239-244 (2001) · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[4] Lawler, Gf; Schramm, O.; Werner, W., Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann Probab, 32, 939-995 (2004) · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[5] Schramm, O.; Sheffield, S., The harmonic explorer and its convergence to \(####\), Ann Probab, 33, 2127-2148 (2005) · Zbl 1095.60007 · doi:10.1214/009117905000000477
[6] Schramm, O.; Sheffield, S., Contour lines of the two-dimensional discrete Gaussian free field, Acta Math, 202, 21-137 (2009) · Zbl 1210.60051 · doi:10.1007/s11511-009-0034-y
[7] Chelkak, D.; Smirnov, S., Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent Math, 189, 515-580 (2012) · Zbl 1257.82020 · doi:10.1007/s00222-011-0371-2
[8] Dubédat, J., Commutation relations for Schramm-Loewner evolutions, Comm Pure Appl Math, 60, 1792-1847 (2007) · Zbl 1137.82009 · doi:10.1002/cpa.20191
[9] Kager, W.; Nienhuis, B., A guide to stochastic Loewner evolution and its applications, J Statist Phys, 115, 1149-1229 (2004) · Zbl 1157.82327 · doi:10.1023/B:JOSS.0000028058.87266.be
[10] Lawler, Gf., Conformally invariant processes in the plane. Mathematical surveys and monographs, 114 (2005), Providence (RI): American Mathematical Society, Providence (RI) · Zbl 1074.60002
[11] Rohde, S.; Schramm, O., Basic properties of SLE, Ann Math, 161, 2, 883-924 (2005) · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[12] Lawler, Gf; Schramm, O.; Werner, W., Values of Brownian intersection exponents I: half-plane exponents, Acta Math, 187, 237-273 (2001) · Zbl 1005.60097 · doi:10.1007/BF02392618
[13] Lawler, Gf; Schramm, O.; Werner, W., Values of Brownian intersection exponents II: plane exponents, Acta Math, 187, 275-308 (2001) · Zbl 0993.60083 · doi:10.1007/BF02392619
[14] Lawler, Gf; Schramm, O.; Werner, W., Values of Brownian intersection exponents III: two-sided exponents, Ann Inst H Poincaré Probab Statist, 38, 109-123 (2002) · Zbl 1006.60075 · doi:10.1016/S0246-0203(01)01089-5
[15] Bauer, Ro; Friedrich, Rm., On radial Stochastic Loewner evolution in multiply connected domains, J Funct Anal, 237, 565-588 (2006) · Zbl 1098.60086 · doi:10.1016/j.jfa.2005.12.023
[16] Bauer, Ro; Friedrich, Rm., On chordal and bilateral SLE in multiply connected domains, Math Z, 258, 241-265 (2008) · Zbl 1130.30006 · doi:10.1007/s00209-006-0041-z
[17] Chen, Z-Q; Fukushima, M., Stochastic Komatu-Loewner evolutions and BMD domain constant, Stoch Proc Appl, 128, 545-594 (2018) · Zbl 1380.60076 · doi:10.1016/j.spa.2017.05.007
[18] Chen, Z-Q; Fukushima, M.; Rohde, S., Chordal Komatu-Loewner equation and Brownian motion with darning in multiply connected domains, Trans Amer Math Soc, 368, 4065-4114 (2016) · Zbl 1374.60123 · doi:10.1090/tran/6441
[19] Lawler, Gf; Schramm, O.; Werner, W., Conformal restriction: the chordal case, J Amer Math Soc, 16, 917-955 (2003) · Zbl 1030.60096 · doi:10.1090/S0894-0347-03-00430-2
[20] Virág, B., Brownian beads, Probab Theory Relat Fields, 127, 367-387 (2003) · Zbl 1035.60085 · doi:10.1007/s00440-003-0289-8
[21] Dubédat, J., \(####\) martingales and duality, Ann Prob, 33, 223-243 (2005) · Zbl 1096.60037 · doi:10.1214/009117904000000793
[22] Friedrich, R.; Werner, W., Conformal restriction, highest-weight representations and SLE, Comm Math Phys, 243, 105-122 (2003) · Zbl 1030.60095 · doi:10.1007/s00220-003-0956-8
[23] Lawler, Gf, Schramm, O, Werner, W.On the scaling limit of planar self-avoiding walk. In: Lapidus ML, Frankenhuijsen Mv, editors. Fractal geometry and applications: A jubilee of Benoit Mandelbrot 72, Part 2, AMS Proc. Pure Math. Providence, RI; 2004. p. 339-364. · Zbl 1069.60089
[24] Lawler, Gf; Werner, W., The Brownian loop soup, Probab Theory Relat Fields, 128, 565-588 (2004) · Zbl 1049.60072 · doi:10.1007/s00440-003-0319-6
[25] Werner, W., Girsanov’s theorem for \(####\) processes, intersection exponents and hiding exponents, Ann Fac Sci Toulouse Math, 13, 121-147 (2004) · Zbl 1059.60099 · doi:10.5802/afst.1066
[26] Werner, W., Conformal restriction and related questions, Probab Surv, 2, 145-190 (2005) · Zbl 1189.60032 · doi:10.1214/154957805100000113
[27] Wu, H., Conformal restriction: the radial case, Stoch Proc Appl, 125, 552-570 (2015) · Zbl 1341.60130 · doi:10.1016/j.spa.2014.09.008
[28] Ahlfors, Lv., Complex analysis (1966), New York: McGraw-Hill, New York · Zbl 0154.31904
[29] Chen, Z-Q; Fukushima, M., Symmetric Markov processes, time change and boundary theory (2011), Princeton (NJ): Princeton University Press, Princeton (NJ)
[30] Koebe, P., Über die konforme Abbildung mehrfach-zusammenhängender Bereiche, Jahrsber Deut Math Ver, 19, 339-348 (1910), German · JFM 41.0747.07
[31] Bass, Rf., Probabilistic techniques in analysis (1995), New York: Springer-Verlag, New York · Zbl 0817.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.