×

Boundary behavior of SLE. (English) Zbl 1198.60043

Summary: We show that the normalized (pre-)Schwarzian derivative of SLE, after we subtract a negligible term, is a complex BMO martingale. Its BMO norm gives strong evidence for Duplantier’s duality conjecture. We also show that it has correlations that decay exponentially in the hyperbolic distance.
We reexamine S. Rohde and O. Schramm’s derivative expectation [Ann. Math. (2) 161, No. 2, 883–924 (2005; Zbl 1081.60069)] to derive the conjectured sharp estimate for the Hölder exponent unless the parameter of SLE is 4.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
28A80 Fractals
30C55 General theory of univalent and multivalent functions of one complex variable
60J65 Brownian motion

Citations:

Zbl 1081.60069
Full Text: DOI

References:

[1] V. Beffara, The dimension of the SLE curves, preprint, math.PR/0211322 (2002).
[2] I. Binder, Rotational spectrum of planar domains, Ph.D. thesis, Caltech, 1997.
[3] Christopher J. Bishop and Peter W. Jones, Harmonic measure, \?² estimates and the Schwarzian derivative, J. Anal. Math. 62 (1994), 77 – 113. · Zbl 0801.30024 · doi:10.1007/BF02835949
[4] Christopher J. Bishop and Peter W. Jones, Wiggly sets and limit sets, Ark. Mat. 35 (1997), no. 2, 201 – 224. · Zbl 0939.30031 · doi:10.1007/BF02559967
[5] Christopher J. Bishop, Peter W. Jones, Robin Pemantle, and Yuval Peres, The dimension of the Brownian frontier is greater than 1, J. Funct. Anal. 143 (1997), no. 2, 309 – 336. · Zbl 0870.60077 · doi:10.1006/jfan.1996.2928
[6] Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137 – 152. · Zbl 0573.30014 · doi:10.1007/BF02392821
[7] Bertrand Duplantier, Conformally invariant fractals and potential theory, Phys. Rev. Lett. 84 (2000), no. 7, 1363 – 1367. · Zbl 1042.82577 · doi:10.1103/PhysRevLett.84.1363
[8] Bertrand Duplantier, Conformal fractal geometry & boundary quantum gravity, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 365 – 482. · Zbl 1068.60019
[9] B. Duplantier and I. Binder, Harmonic measure and winding of conformally invariant curves, Phys. Rev. Lett. 89 (2002), 264101.
[10] Richard Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series, Wadsworth International Group, Belmont, CA, 1984. · Zbl 0554.60075
[11] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman; With a preface by Mina Rees; With a foreword by E. C. Watson; Reprint of the 1953 original. Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. II, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman; Reprint of the 1953 original. Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. III, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman; Reprint of the 1955 original. · Zbl 0058.34103
[12] Gerald B. Folland, Fourier analysis and its applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. · Zbl 0786.42001
[13] John B. Garnett and Donald E. Marshall, Harmonic measure, New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge, 2005. · Zbl 1077.31001
[14] G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. · Zbl 0183.07502
[15] Jacek Graczyk and Peter Jones, Dimension of the boundary of quasiconformal Siegel disks, Invent. Math. 148 (2002), no. 3, 465 – 493. · Zbl 1079.37507 · doi:10.1007/s002220100198
[16] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415 – 426. · Zbl 0102.04302 · doi:10.1002/cpa.3160140317
[17] Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1 – 15. · Zbl 0731.30018 · doi:10.1007/BF01233418
[18] Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. · Zbl 0734.60060
[19] G. Lawler, The dimension of the frontier of planar Brownian motion, Electron. Comm. Probab. 1 (1996), no. 5, 29 – 47. · Zbl 0857.60083 · doi:10.1214/ECP.v1-975
[20] Gregory F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005. · Zbl 1074.60002
[21] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar Brownian frontier is 4/3, Math. Res. Lett. 8 (2001), no. 1-2, 13 – 23. , https://doi.org/10.4310/MRL.2001.v8.n1.a3 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar Brownian frontier is 4/3, Math. Res. Lett. 8 (2001), no. 4, 401 – 411. · Zbl 1114.60316 · doi:10.4310/MRL.2001.v8.n4.a1
[22] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083 · doi:10.1007/BF02392619
[23] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083 · doi:10.1007/BF02392619
[24] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Analyticity of intersection exponents for planar Brownian motion, Acta Math. 189 (2002), no. 2, 179 – 201. · Zbl 1024.60033 · doi:10.1007/BF02392842
[25] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. III. Two-sided exponents, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 1, 109 – 123 (English, with English and French summaries). · Zbl 1006.60075 · doi:10.1016/S0246-0203(01)01089-5
[26] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), no. 1B, 939 – 995. · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[27] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, On the scaling limit of planar self-avoiding walk, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 339 – 364. · Zbl 1069.60089
[28] J. Lind, Hölder regularity for the SLE trace, preprint (2005). · Zbl 1141.60066
[29] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. · Zbl 0762.30001
[30] John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. · Zbl 0809.51001
[31] Steffen Rohde and Oded Schramm, Basic properties of SLE, Ann. of Math. (2) 161 (2005), no. 2, 883 – 924. · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[32] Byron Schmuland and Wei Sun, A central limit theorem and law of the iterated logarithm for a random field with exponential decay of correlations, Canad. J. Math. 56 (2004), no. 1, 209 – 224. · Zbl 1050.60053 · doi:10.4153/CJM-2004-010-6
[33] Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221 – 288. · Zbl 0968.60093 · doi:10.1007/BF02803524
[34] Oded Schramm and Scott Sheffield, Harmonic explorer and its convergence to \?\?\?\(_{4}\), Ann. Probab. 33 (2005), no. 6, 2127 – 2148. · Zbl 1095.60007 · doi:10.1214/009117905000000477
[35] Stanislav Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239 – 244 (English, with English and French summaries). · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[36] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. · Zbl 0821.42001
[37] Wendelin Werner, Random planar curves and Schramm-Loewner evolutions, Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, pp. 107 – 195. · Zbl 1057.60078 · doi:10.1007/978-3-540-39982-7_2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.