×

Bridge decomposition of restriction measures. (English) Zbl 1197.82055

Summary: Motivated by Kesten’s bridge decomposition for two-dimensional self-avoiding walks in the upper half plane, we show that the conjectured scaling limit of the half-plane SAW, the \(\text{SLE}(8/3)\) process, also has an appropriately defined bridge decomposition. This continuum decomposition turns out to entirely be a consequence of the restriction property of \(\text{SLE}(8/3)\), and as a result can be generalized to the wider class of restriction measures. Specifically, we show that the restriction hulls with index less than one can be decomposed into a Poisson point process of irreducible bridges in a way that is similar to Itô’s excursion decomposition of a Brownian motion according to its zeros.

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60J65 Brownian motion
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

References:

[1] Alberts, T., Sheffield, S.: Hausdorff dimension of the sle curve intersected with the real line. Electron. J. Probab. 13, 1166–1188 (2008). (electronic) URL http://www.math.washington.edu/\(\sim\)ejpecp/ · Zbl 1192.60025
[2] Beffara, V.: The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452 (2008) · Zbl 1165.60007 · doi:10.1214/07-AOP364
[3] Bertoin, J.: Subordinators: examples and applications. In: Lectures on probability theory and statistics (Saint-Flour, 1997). Lecture Notes in Math., vol. 1717, pp. 1–91. Springer, Berlin (1999) · Zbl 0955.60046
[4] Dubédat, J.: Excursion decompositions for SLE and Watts’ crossing formula. Probab. Theory Related Fields 134(3), 453–488 (2006) · Zbl 1112.60032 · doi:10.1007/s00440-005-0446-3
[5] Kennedy, T.: A fast algorithm for simulating the chordal Schramm-Loewner evolution. J. Stat. Phys. 128(5), 1125–1137 (2007) · Zbl 1180.82135 · doi:10.1007/s10955-007-9358-1
[6] Kesten, H.: On the number of self-avoiding walks. J. Math. Phys. 4, 960–969 (1963) · Zbl 0122.36502 · doi:10.1063/1.1704022
[7] Kesten, H.: On the number of self-avoiding walks. II. J. Math. Phys. 5, 1128–1137 (1964) · Zbl 0161.37402 · doi:10.1063/1.1704216
[8] Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917–955 (2003) (electronic) · Zbl 1030.60096 · doi:10.1090/S0894-0347-03-00430-2
[9] Lawler, G.F.: Hausdorff dimension of cut points for Brownian motion. Electron. J. Probab. 1(2), (1996) approx. 20 pp. (electronic) · Zbl 0891.60078
[10] Lawler, G.F.: Conformally invariant processes in the plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005) · Zbl 1074.60002
[11] Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal Geometry and Applications: a Jubilee of Benoît Mandelbrot, Part 2. Proc. Sympos. Pure Math., vol. 72, pp. 339–364. Amer. Math. Soc., Providence (2004) · Zbl 1069.60089
[12] Lawler, G.F., Sheffield, S.: Construction of the natural parameterization for SLE curves. (2009). arXiv:0906.3804v1 [math.PR]
[13] Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Related Fields 128(4), 565–588 (2004) · Zbl 1049.60072 · doi:10.1007/s00440-003-0319-6
[14] Madras, N., Slade, G.: The Self-Avoiding Walk. Probability and Its Applications. Birkhäuser, Boston (1993) · Zbl 0780.60103
[15] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn. Springer, Berlin (1999) · Zbl 0917.60006
[16] Schramm, O., Zhou, W.: Boundary proximity of SLE (2007). arXiv:0711.3350v2 [math.PR] · Zbl 1227.60101
[17] Virág, B.: Brownian beads. Probab. Theory Related Fields 127(3), 367–387 (2003) · Zbl 1035.60085 · doi:10.1007/s00440-003-0289-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.