×

Robust identification of differential equations by numerical techniques from a single set of noisy observation. (English) Zbl 07525086

Summary: We propose robust methods to identify the underlying Partial Differential Equation (PDE) from a given single set of noisy time-dependent data. We assume that the governing equation of the PDE is a linear combination of a few linear and nonlinear differential terms in a prescribed dictionary. Noisy data make such identification particularly challenging. Our objective is to develop robust methods against a high level of noise and approximate the underlying noise-free dynamics well. We first introduce a Successively Denoised Differentiation (SDD) scheme to stabilize the amplified noise in numerical differentiation. SDD effectively denoises the given data and the corresponding derivatives. Second, we present two algorithms for PDE identification: Subspace pursuit Time evolution (ST) error and Subspace pursuit Cross-validation (SC). Our general strategy is to first find a candidate set using the Subspace Pursuit (SP) greedy algorithm, then choose the best one via time evolution or cross-validation. ST uses a multishooting numerical time evolution and selects the PDE which yields the least evolution error. SC evaluates the cross-validation error in the least-squares fitting and picks the PDE that gives the smallest validation error. We present various numerical experiments to validate our methods. Both methods are efficient and robust to noise.

MSC:

65-XX Numerical analysis
35R30 Inverse problems for PDEs
65Z05 Applications to the sciences
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs

References:

[1] E. Baake, M. Baake, H. Bock, and K. Briggs, Fitting ordinary differential equations to chaotic data, Phys. Rev. A, 45 (1992), 5524.
[2] M. Bär, R. Hegger, and H. Kantz, Fitting partial differential equations to space-time dynamics, Phys. Rev. E, 59 (1999), 337.
[3] H. G. Bock, Numerical treatment of inverse problems in chemical reaction kinetics, in Modelling of Chemical Reaction Systems, Springer, Berlin, Heidelberg 1981, pp. 102-125.
[4] H. G. Bock, Recent advances in parameter identification techniques for ODE, in Numerical Treatment of Inverse Problems in Differential and Integral Equations, Birkhäuser Boston, Boston, 1983, pp. 95-121. · Zbl 0516.65067
[5] J. Bongard and H. Lipson, Automated reverse engineering of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 9943-9948. · Zbl 1155.37044
[6] M. Bongini, M. Fornasier, M. Hansen, and M. Maggioni, Inferring interaction rules from observations of evolutive systems I: The variational approach, Math. Models Methods Appl. Sci., 27 (2017), pp. 909-951. · Zbl 1368.37017
[7] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 3932-3937. · Zbl 1355.94013
[8] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489-509. · Zbl 1231.94017
[9] P. Craven and G. Wahba, Smoothing noisy data with spline functions, Numer. Math., 31 (1978), pp. 377-403. · Zbl 0377.65007
[10] W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inform. Theory, 55 (2009), pp. 2230-2249. · Zbl 1367.94082
[11] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289-1306. · Zbl 1288.94016
[12] D. L. Donoho and X. Huo, Uncertainty principles and ideal atomic decomposition, IEEE Trans. Inform. Theory, 47 (2001), pp. 2845-2862. · Zbl 1019.94503
[13] D. R. Gurevich, P. A. Reinbold, and R. O. Grigoriev, Robust and optimal sparse regression for nonlinear PDE models, Chaos, 29 (2019), 103113. · Zbl 1433.35387
[14] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III, in Upwind and High-resolution Schemes, Springer, Berlin, Heidelberg, 1987, pp. 218-290. · Zbl 0652.65067
[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, 2009. · Zbl 1273.62005
[16] E. Kaiser, J. N. Kutz, and S. L. Brunton, Sparse identification of nonlinear dynamics for model predictive control in the low-data limit, Proc. A., 474 (2018), 20180335. · Zbl 1425.93175
[17] S. H. Kang, W. Liao, and Y. Liu, IDENT: Identifying Differential Equations with Numerical Time Evolution, preprint, https://arxiv.org/abs/1904.03538, 2019. · Zbl 1467.65102
[18] Y. Khoo and L. Ying, SwitchNet: A Neural Network Model for Forward and Inverse Scattering Problems, preprint, https://arxiv.org/abs/1810.09675, 2018. · Zbl 1425.65208
[19] P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares methods, Math. Comp., 37 (1981), pp. 141-158. · Zbl 0469.41005
[20] H. Liang and H. Wu, Parameter estimation for differential equation models using a framework of measurement error in regression models, J. Amer. Statist. Assoc., 103 (2008), pp. 1570-1583. · Zbl 1286.62039
[21] J.-C. Loiseau and S. L. Brunton, Constrained sparse Galerkin regression, J. Fluid Mech., 838 (2018), pp. 42-67. · Zbl 1419.76205
[22] Z. Long, Y. Lu, and B. Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, J. Comput. Phys., 399 (2019), 108925. · Zbl 1454.65131
[23] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDSs from Data, preprint, https://arxiv.org/abs/1710.09668, 2017.
[24] F. Lu, M. Zhong, S. Tang, and M. Maggioni, Nonparametric inference of interaction laws in systems of agents from trajectory data, Proc. Natl. Acad. Sci. USA, 116 (2019), pp. 14424-14433. · Zbl 1431.62122
[25] B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning for universal linear embeddings of nonlinear dynamics, Nat. Commun., 9 (2018), 4950.
[26] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor, Model selection for dynamical systems via sparse regression and information criteria, Proc. A, 473 (2017), 20170009. · Zbl 1404.65308
[27] D. A. Messenger and D. M. Bortz, Weak SINDy for Partial Differential Equations, preprint, https://arxiv.org/abs/2007.02848, 2020.
[28] T. Müller and J. Timmer, Parameter identification techniques for partial differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), pp. 2053-2060. · Zbl 1062.35177
[29] T. G. Müller and J. Timmer, Fitting parameters in partial differential equations from partially observed noisy data, Phys. D, 171 (2002), pp. 1-7. · Zbl 1009.65062
[30] U. Parlitz and C. Merkwirth, Prediction of spatiotemporal time series based on reconstructed local states, Phys. Rev. Lett., 84 (2000), 1890.
[31] T. Qin, K. Wu, and D. Xiu, Data driven governing equations approximation using deep neural networks, J. Comput. Phys., 395 (2019), pp. 620-635. · Zbl 1455.65125
[32] M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations, J. Comput. Phys., 357 (2018), pp. 125-141. · Zbl 1381.68248
[33] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics Informed Deep Learning (Part \textupI): Data-driven Solutions of Nonlinear Partial Differential Equations, preprint, https://arxiv.org/abs/1711.10561, 2017. · Zbl 1382.65229
[34] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Data-driven discovery of partial differential equations, Sci. Adv., 3 (2017), e1602614.
[35] H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. A, 473 (2017), 20160446. · Zbl 1404.35397
[36] H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher, Sparse dynamics for partial differential equations, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 6634-6639. · Zbl 1292.35012
[37] H. Schaeffer, G. Tran, and R. Ward, Extracting sparse high-dimensional dynamics from limited data, SIAM J. Appl. Math., 78 (2018), pp. 3279-3295, https://doi.org/10.1137/18M116798X. · Zbl 1405.62127
[38] M. Schmidt and H. Lipson, Distilling free-form natural laws from experimental data, Science, 324 (2009), pp. 81-85.
[39] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego, 1997.
[40] M. Tham, Dealing with Measurement Noise: Moving Average Filter, Chemical Engineering and Advanced Materials, University of Newcastle upon Tyne, Tyne, UK, 1998.
[41] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), pp. 267-288. · Zbl 0850.62538
[42] J. Timmer, T. Müller, and W. Melzer, Numerical methods to determine calcium release flux from calcium transients in muscle cells, Biophys. J., 74 (1998), pp. 1694-1707.
[43] G. Tran and R. Ward, Exact recovery of chaotic systems from highly corrupted data, Multiscale Model. Simul., 15 (2017), pp. 1108-1129, https://doi.org/10.1137/16M1086637.
[44] H. U. Voss, P. Kolodner, M. Abel, and J. Kurths, Amplitude equations from spatiotemporal binary-fluid convection data, Phys. Rev. Lett., 83 (1999), 3422.
[45] P.-\AA. Wedin, Perturbation theory for pseudo-inverses, BIT Numer. Math., 13 (1973), pp. 217-232. · Zbl 0263.65047
[46] H. Wendland, Local polynomial reproduction and moving least squares approximation, IMA J. Numer. Anal., 21 (2001), pp. 285-300. · Zbl 0976.65013
[47] A. P. Witkin, Scale-space filtering, in Readings in Computer Vision, Morgan Kaufmann, San Francisco, 1987, pp. 329-332.
[48] X. Xun, J. Cao, B. Mallick, A. Maity, and R. J. Carroll, Parameter estimation of partial differential equation models, J. Amer. Statist. Assoc., 108 (2013), pp. 1009-1020. · Zbl 06224983
[49] M. M. Zhang, H. Lam, and L. Lin, Robust and parallel Bayesian model selection, Comput. Statist. Data Anal., 127 (2018), pp. 229-247. · Zbl 1469.62178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.