×

Parameter estimation of partial differential equation models. (English) Zbl 06224983

Summary: Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online.

MSC:

62-XX Statistics

Software:

SemiPar

References:

[1] Bar M., Physical Review E 59 pp 337– (1999) · doi:10.1103/PhysRevE.59.337
[2] DOI: 10.1198/016214502753479301 · Zbl 1073.62524 · doi:10.1198/016214502753479301
[3] Brenner S. C., The Mathematical Theory of Finite Element Methods (2010)
[4] Burden R. L., Numerical Analysis, (9th ed.) (2010)
[5] DOI: 10.1198/jcgs.2011.10021 · doi:10.1198/jcgs.2011.10021
[6] Cao J., Biometrics 67 pp 1305– (2011) · Zbl 1274.62739 · doi:10.1111/j.1541-0420.2011.01577.x
[7] DOI: 10.1198/016214507000001382 · Zbl 1469.62365 · doi:10.1198/016214507000001382
[8] de Boor C., A Practical Guide to Splines (Revised edition), Applied Mathematical Sciences 27 (2001) · Zbl 0987.65015
[9] Denison D. G. T., Journal of the Royal Statistical Society, Series B 60 pp 333– (1997) · Zbl 0907.62031 · doi:10.1111/1467-9868.00128
[10] Eilers P., Chemometrics and Intelligent Laboratory Systems 66 pp 159– (2003) · doi:10.1016/S0169-7439(03)00029-7
[11] Eilers P., Wiley Interdisciplinary Reviews: Computational Statistics 2 pp 637– (2010) · doi:10.1002/wics.125
[12] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics 19 (1998) · Zbl 0902.35002
[13] DOI: 10.1080/00401706.1989.10488470 · doi:10.1080/00401706.1989.10488470
[14] DOI: 10.1080/01621459.1990.10476213 · doi:10.1080/01621459.1990.10476213
[15] Gilks W. R., Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics (1996) · Zbl 0832.00018 · doi:10.1007/978-1-4899-4485-6
[16] Ho D. D., Nature 373 pp 123– (1995) · doi:10.1038/373123a0
[17] Huang Y., Biometrics 62 pp 413– (2006) · Zbl 1097.62128 · doi:10.1111/j.1541-0420.2005.00447.x
[18] DOI: 10.1080/02664760500250552 · Zbl 1106.62121 · doi:10.1080/02664760500250552
[19] Li L., Biometrics 58 pp 601– (2002) · Zbl 1210.62179 · doi:10.1111/j.0006-341X.2002.00601.x
[20] DOI: 10.1198/016214508000000797 · Zbl 1286.62039 · doi:10.1198/016214508000000797
[21] DOI: 10.1198/004017004000000626 · doi:10.1198/004017004000000626
[22] Morton K. W., Numerical Solution of Partial Differential Equations, An Introduction (2005) · Zbl 1126.65077 · doi:10.1017/CBO9780511812248
[23] Muller T., Physical Review, D 171 pp 1– (2002)
[24] Muller T., International Journal of Bifurcation and Chaos 14 pp 2053– (2004) · Zbl 1062.35177 · doi:10.1142/S0218127404010424
[25] Parlitz U., Physical Review Letters 84 pp 1890– (2000) · doi:10.1103/PhysRevLett.84.1890
[26] Poyton A. A., Computer and Chemical Engineering 30 pp 698– (2006) · doi:10.1016/j.compchemeng.2005.11.008
[27] Putter H., Statistics in Medicine 21 pp 2199– (2002) · doi:10.1002/sim.1211
[28] Ramsay J. O., Journal of the Royal Statistical Society, Series B 58 pp 495– (1996)
[29] Ramsay J. O., Journal of the Royal Statistical Society, Series B 69 pp 741– (2007) · doi:10.1111/j.1467-9868.2007.00610.x
[30] Ruppert D., Semiparametric Regression (2003) · Zbl 1038.62042 · doi:10.1017/CBO9780511755453
[31] Stone C. J., The Annals of Statistics 25 pp 1371– (1997) · Zbl 0924.62036 · doi:10.1214/aos/1031594728
[32] Voss H. U., Physical Review Letters 83 pp 3422– (1999) · doi:10.1103/PhysRevLett.83.3422
[33] Warren R. E., Proceedings of SPIE 7304 pp 73040E– (2009) · doi:10.1117/12.818694
[34] Warren R. E., Proceedings of SPIE 7665 pp 766504– (2010) · doi:10.1117/12.850077
[35] Warren R. E., Applied Optics 47 pp 4309– (2008) · doi:10.1364/AO.47.004309
[36] Wei X., Nature 373 pp 117– (1995) · doi:10.1038/373117a0
[37] Wu H., Statistical Methods in Medical Research 14 pp 171– (2005) · Zbl 1122.62378 · doi:10.1191/0962280205sm390oa
[38] Wu H., Biometrics 55 pp 410– (1999) · Zbl 1059.62735 · doi:10.1111/j.0006-341X.1999.00410.x
[39] Wu H., Statistics in Medicine 17 pp 2463– (1998) · doi:10.1002/(SICI)1097-0258(19981115)17:21<2463::AID-SIM939>3.0.CO;2-A
[40] DOI: 10.1198/016214502388618861 · Zbl 1045.62035 · doi:10.1198/016214502388618861
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.