×

Inferring the unknown parameters in differential equation by Gaussian process regression with constraint. (English) Zbl 1513.60039

Summary: Differential equation (DE) is a commonly used modeling method in various scientific subjects such as finance and biology. The parameters in DE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements. Here, we develop a one-stage parameter estimation framework, which is based on the Markov Chain Monte Carlo (MCMC) method, to draw the samples from the posterior distribution of the unknown parameters from the given noisy and scarce observations of the solution only. A likelihood function including a novel potential is constructed to infer the unknown parameters and the novel potential works by measuring the residual errors of both data and DE model with given model parameters. A key issue in parameter estimation problem is to robustly estimate the solution and its derivatives from noisy observations of only the function values at given location points, under the assumption of a physical model in the form of differential equation governing the function and its derivatives. To address the key issue, we propose to use the Gaussian process regression with constraint (GPRC) method which jointly model the solution, its derivatives, and the parametric differential equation, to estimate the solution and its derivatives. With numerical examples, we illustrate that the proposed method has competitive performance against existing approaches for estimating the unknown parameters in DEs.

MSC:

60G15 Gaussian processes
62F15 Bayesian inference
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35R30 Inverse problems for PDEs

References:

[1] Cao, J.; Wang, L.; Xu, J., Robust estimation for ordinary differential equation models, Biometrics, 67, 4, 1305-1313 (2011) · Zbl 1274.62739 · doi:10.1111/j.1541-0420.2011.01577.x
[2] Cao, J.; Huang, JZ; Hulin, W., Penalized nonlinear least squares estimation of time-varying parameters in ordinary differential equations, J Comput Graph Stat, 21, 1, 42-56 (2012) · doi:10.1198/jcgs.2011.10021
[3] Chen, J.; Wu, H., Efficient local estimation for time-varying coefficients in deterministic dynamic models with applications to hiv-1 dynamics, J Am Stat Assoc, 103, 481, 369-384 (2008) · Zbl 1469.62365 · doi:10.1198/016214507000001382
[4] Chib, S.; Greenberg, E., Understanding the metropolis-hastings algorithm, Am Stat, 49, 4, 327-335 (1995)
[5] Earl A (1955) Coddington and Norman Levinson. Theory of ordinary differential equations, Tata McGraw-Hill Education · Zbl 0064.33002
[6] Gilks, WR; Wild, P., Adaptive rejection sampling for gibbs sampling, J R Stat Soc Ser C (Appl Stat), 41, 2, 337-348 (1992) · Zbl 0825.62407
[7] Girolami, M., Bayesian inference for differential equations, Theor Comput Sci, 408, 1, 4-16 (2008) · Zbl 1152.62016 · doi:10.1016/j.tcs.2008.07.005
[8] Graepel, T., Solving noisy linear operator equations by gaussian process: application to ordinary and partial differential equations, Int Conf Mach Learn, 2003, 234-241 (2003)
[9] Haario, H.; Laine, M.; Mira, A.; Saksman, E., Dram: efficient adaptive mcmc, Stat Comput, 16, 4, 339-354 (2006) · doi:10.1007/s11222-006-9438-0
[10] Hall, P.; Ma, Y., Quick and easy one-step parameter estimation in differential equations, J R Stat Soc Ser B Stat Methodol, 2014, 735-748 (2014) · Zbl 07555461 · doi:10.1111/rssb.12040
[11] Ho, DD; Neumann, AU; Perelson, AS; Chen, W.; Leonard, JM; Markowitz, M., Rapid turnover of plasma virions and cd4 lymphocytes in hiv-1 infection, Nature, 373, 6510, 123-126 (1995) · doi:10.1038/373123a0
[12] Huang, Y.; Liu, D.; Hulin, W., Hierarchical bayesian methods for estimation of parameters in a longitudinal hiv dynamic system, Biometrics, 62, 2, 413-423 (2006) · Zbl 1097.62128 · doi:10.1111/j.1541-0420.2005.00447.x
[13] Hulin, W., Statistical methods for hiv dynamic studies in aids clinical trials, Stat Methods Med Res, 14, 2, 171-192 (2005) · Zbl 1122.62378 · doi:10.1191/0962280205sm390oa
[14] Hulin, W.; Adam Ding, A.; De Gruttola, V., Estimation of hiv dynamic parameters, Stat Med, 17, 21, 2463-2485 (1998) · doi:10.1002/(SICI)1097-0258(19981115)17:21<2463::AID-SIM939>3.0.CO;2-A
[15] Hulin, W.; Adam Ding, A., Population hiv-1 dynamics in vivo: applicable models and inferential tools for virological data from aids clinical trials, Biometrics, 55, 2, 410-418 (1999) · Zbl 1059.62735 · doi:10.1111/j.0006-341X.1999.00410.x
[16] Liang, H.; Wu, H., Parameter estimation for differential equation models using a framework of measurement error in regression models, J Am Stat Assoc, 103, 484, 1570-1583 (2008) · Zbl 1286.62039 · doi:10.1198/016214508000000797
[17] Markus, B.; Hegger, R.; Kantz, H., Fitting partial differential equations to space-time dynamics, Phys Rev E, 59, 1, 337 (1999) · doi:10.1103/PhysRevE.59.337
[18] Müller, TG; Timmer, J., Fitting parameters in partial differential equations from partially observed noisy data, Phys D: Nonlinear Phenom, 171, 1-2, 1-7 (2002) · Zbl 1009.65062 · doi:10.1016/S0167-2789(02)00546-8
[19] Müller, TG; Timmer, J., Parameter identification techniques for partial differential equations, Int J Bifurc Chaos, 14, 6, 2053-2060 (2004) · Zbl 1062.35177 · doi:10.1142/S0218127404010424
[20] Parlitz, U.; Merkwirth, C., Prediction of spatiotemporal time series based on reconstructed local states, Phys Rev Lett, 84, 9, 1890 (2000) · doi:10.1103/PhysRevLett.84.1890
[21] Putter, SHH; Heisterkamp, JMAL; De Wolf, F., A bayesian approach to parameter estimation in hiv dynamical models, Stat Med, 21, 15, 2199-2214 (2002) · doi:10.1002/sim.1211
[22] Rai, PK; Tripathi, S., Gaussian process for estimating parameters of partial differential equations and its application to the richards equation, Stochastic Env Res Risk Assess, 33, 8-9, 1629-1649 (2019) · doi:10.1007/s00477-019-01709-8
[23] Ramsay, JO; Hooker, G.; Campbell, D.; Cao, J., Parameter estimation for differential equations: a generalized smoothing approach, J R Stat Soc Ser B (Stat Methodol), 69, 5, 741-796 (2007) · Zbl 07555374 · doi:10.1111/j.1467-9868.2007.00610.x
[24] Rudy, SH; Brunton, SL; Proctor, JL; Nathan Kutz, J., Data-driven discovery of partial differential equations, Sci Adv, 3, 4 (2017) · doi:10.1126/sciadv.1602614
[25] Seeger, M., Gaussian processes for machine learning, Int J Neural Syst, 14, 2, 69-106 (2004) · doi:10.1142/S0129065704001899
[26] Voss, HU; Kolodner, P.; Abel, M.; Kurths, J., Amplitude equations from spatiotemporal binary-fluid convection data, Phys Rev Lett, 83, 17, 3422 (1999) · doi:10.1103/PhysRevLett.83.3422
[27] Wang, H.; Li, J., Adaptive gaussian process approximation for bayesian inference with expensive likelihood functions, Neural Comput, 30, 11, 3072-3094 (2018) · Zbl 1471.62290 · doi:10.1162/neco_a_01127
[28] Wang H, Zhou X (2020) Explicit estimation of derivatives from data and differential equations by gaussian process regression. arXiv:2004.05796
[29] Wei, X.; Ghosh, SK; Taylor, ME; Johnson, VA; Emini, EA; Deutsch, P.; Lifson, JD; Bonhoeffer, S.; Nowak, MA; Hahn, BH, Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 6510, 117-122 (1995) · doi:10.1038/373117a0
[30] Xun, X.; Cao, J.; Mallick, B.; Maity, A.; Carroll, RJ, Parameter estimation of partial differential equation models, J Am Stat Assoc, 108, 503, 1009-1020 (2013) · Zbl 06224983 · doi:10.1080/01621459.2013.794730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.