×

Some energy preserving finite element schemes based on the discrete variational derivative method. (English) Zbl 1094.65100

Energy preserving finite element schemes for linear heat and wave equations are presented. Applications to the nonlinear Allen-Cahn equation and the Fujita problem are considered.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35L05 Wave equation
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. Mater., 27, 1085-1095 (1979)
[2] Arnold, V. I., Mathematical Methods of Classical Mechanics (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0692.70003
[3] Du, Q.; Nicolaides, R. A., Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal., 28, 5, 1310-1322 (1991) · Zbl 0744.65089
[4] Fei, Z.; Vázquez, L., Two energy conserving numerical schemes for the sine-Gordon equation, Appl. Math. Comput., 45, 17-31 (1991) · Zbl 0732.65107
[5] French, D. A.; Schaeffer, J. W., Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comput., 39, 3, 271-295 (1990) · Zbl 0716.65084
[6] Fujita, H., On the blowing up of solutions to the Cauchy problem \(u_t=u_{ xx }+u^{1+α\) · Zbl 0163.34002
[7] Fujita, H.; Saito, N.; Suzuki, T., Operator Theory and Numerical Methods (1991), North-Holland, Elsevier: North-Holland, Elsevier Amsterdam
[8] Furihata, D., Finite difference schemes for \(\frac{\partial u}{\partial t} = \left``(\frac{\partial}{\partial x}\right``)^\alpha \frac{\delta G}{\delta u}\) that inherit energy conservation or dissipation property, J. Comput. Phys., 156, 181-205 (1999) · Zbl 0945.65103
[9] Furihata, D., A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87, 675-699 (2001) · Zbl 0974.65086
[10] Greenspan, D., Conservative numerical methods for \(\ddot{x} = f(x)\), J. Comput. Phys., 41, 28-41 (1984) · Zbl 0561.65056
[11] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration-Structure-Preserving Algorithms for Ordinary Differential Equations (2002), Springer-Verlag · Zbl 0994.65135
[12] Ide, T.; Hirota, C.; Okada, M., Generalized energy integral for \(\frac{\partial u}{\partial t} = \frac{\delta G}{\delta u} \), its finite difference schemes by means of the discrete variational method and an application to Fujita problem, Adv. Math. Sci. Appl., 12, 2, 755-778 (2002) · Zbl 1041.35027
[13] Jiménez, S.; Pascual, P.; Aguirre, C.; Vázquez, L., A panoramic view of some perturbed nonlinear wave equations, Int. J. Bifurcat. Chaos, 14, 1, 1-40 (2004) · Zbl 1063.65082
[14] Li, S.; Vu-Quoc, L., Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32, 1839-1875 (1995) · Zbl 0847.65062
[15] Lucquin, B.; Pironneau, O., Introduction to Scientific Computing (1998), John Wiley & Sons Ltd.: John Wiley & Sons Ltd. Chichester · Zbl 0899.65062
[16] McLachlan, R. I.; Quispel, G. R.W.; Robidoux, N., Geometric integration using discrete gradients, Phil. Trans. R. Soc. Lond. A, 357, 1027-1045 (1999) · Zbl 0933.65143
[17] McLachlan, R. I.; Quispel, G. R.W., Six lectures on the geometric integration of ODEs, (DeVore, R.; Iserles, A.; Süri, E., Foundations of Computational Mathematics (2001), Cambridge University Press: Cambridge University Press Cambridge), 155-210 · Zbl 0978.65056
[18] Olver, P. J., Application of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107 (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0785.58003
[19] Strauss, W.; Vázquez, L., Numerical solution of nonlinear Klein-Gordon equation, J. Comput. Phys., 28, 271-278 (1978) · Zbl 0387.65076
[20] Wang, P.; Hsieh, D.; Tang, S.; Wu, J., Pattern selection in a reaction-diffusion equation, Acta Mech. Sin., 18, 6, 652-660 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.