×

Quenched dynamics of classical isolated systems: the spherical spin model with two-body random interactions or the Neumann integrable model. (English) Zbl 1459.82171

Summary: We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called \(p = 2\) kind, closely linked to the \(O(N)\) scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, \(N\to\infty \), we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of \(N\) non-linearly coupled modes. We argue that in the \(N\to\infty\) limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the \(N - 1\) integrals of motion, notably, their scaling with \(N\), and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs-Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)

References:

[1] Bloch, I.; Dalibard, J.; Zwerger, W., Rev. Mod. Phys., 80, 885, (2008) · doi:10.1103/RevModPhys.80.885
[2] Rigol, M.; Dunjko, V.; Yurovsky, V.; Olshanii, M., Phys. Rev. Lett., 98, (2007) · doi:10.1103/PhysRevLett.98.050405
[3] Rigol, M.; Dunjko, V.; Olshanii, M., Nature, 452, 854, (2008) · doi:10.1038/nature06838
[4] Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M., Rev. Mod. Phys., 83, 863, (2011) · doi:10.1103/RevModPhys.83.863
[5] Calabrese, P., J. Stat. Mech., (2016) · doi:10.1088/1742-5468/2016/06/064001
[6] Gogolin, C.; Eisert, J., Rep. Prog. Phys., 79, (2016) · doi:10.1088/0034-4885/79/5/056001
[7] Cugliandolo, L. F.; Lozano, G. S.; Nessi, N., J. Stat. Mech., (2017) · Zbl 1457.82359 · doi:10.1088/1742-5468/aa7dfb
[8] Scaffidi, T.; Altman, E., Semiclassical theory of many-body quantum chaos and its bound, (2017)
[9] Cugliandolo, L. F.; Barrat, J. L., Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, (2002)
[10] Cavagna, A., Phys. Rep., 476, 51, (2009) · doi:10.1016/j.physrep.2009.03.003
[11] Berthier, L.; Biroli, G., Rev. Mod. Phys., 83, 587, (2011) · doi:10.1103/RevModPhys.83.587
[12] Engel, A., Nucl. Phys. B, 410, 617, (1993) · doi:10.1016/0550-3213(93)90531-S
[13] Franz, S.; Mézard, M., Europhys. Lett., 26, 209, (1994) · doi:10.1209/0295-5075/26/3/009
[14] Cugliandolo, L. F.; Le Doussal, P., Phys. Rev. E, 53, 152, (1996) · doi:10.1103/PhysRevA.53.152
[15] Neumann, C., Journal für die reine und angewandte Mathematik, 56, 46-63, (1859) · ERAM 056.1472cj · doi:10.1515/crll.1859.56.46
[16] Uhlenbeck, K. K., Springer, Lecture Notes Math., 49, 146, (1982) · doi:10.1007/BFb0069763
[17] Avan, J.; Talon, M., Int. J. Mod. Phys. A, 05, 4477, (1990) · Zbl 0747.58035 · doi:10.1142/S0217751X90001884
[18] Babelon, O.; Talon, M., Nucl. Phys. B, 379, 321, (1992) · doi:10.1016/0550-3213(92)90599-7
[19] Kosterlitz, J. M.; Thouless, D. J.; Jones, R. C., Phys. Rev. Lett., 36, 1217, (1976) · doi:10.1103/PhysRevLett.36.1217
[20] Cugliandolo, L. F.; Kurchan, J., Phys. Rev. Lett., 71, 173, (1993) · doi:10.1103/PhysRevLett.71.173
[21] Cugliandolo, L. F.; Lozano, G. S., Phys. Rev. Lett., 80, 4979, (1998) · doi:10.1103/PhysRevLett.80.4979
[22] Cugliandolo, L. F.; Lozano, G. S., Phys. Rev. B, 59, 915, (1999) · doi:10.1103/PhysRevB.59.915
[23] Mehta, M. L., Random Matrices, (2004), Amsterdam: Elsevier, Amsterdam · Zbl 1107.15019
[24] Mueller, M.; Wyart, M., Ann. Rev. Condens. Matter Phys., 6, 177, (2015) · doi:10.1146/annurev-conmatphys-031214-014614
[25] Laloux, L.; Kurchan, J., J. Phys. A: Math. Gen., 29, 1929, (1996) · Zbl 0900.70205 · doi:10.1088/0305-4470/29/9/009
[26] Cugliandolo, L. F.; Dean, D. S., J. Phys. A: Math. Gen., 28, L453, (1995) · Zbl 0925.82198 · doi:10.1088/0305-4470/28/17/001
[27] Adler, R. A., The Geometry of Random Fields, (1981), New York: Wiley, New York · Zbl 0478.60059
[28] Bray, A. J.; Dean, D. S., Phys. Rev. Lett., 98, (2007) · doi:10.1103/PhysRevLett.98.150201
[29] Fyodorov, Y. V., J. Stat. Mech., 2016, (2016) · Zbl 1456.82913 · doi:10.1088/1742-5468/aa511a
[30] Ben Arous, G.; Sagun, L.; Ugur Guney, V.; Le Cun, Y., Explorations on high dimensional landscapes, (2015)
[31] Wales, D. J., Energy Landscapes: with Applications to Clusters, Biomolecules and Glasses, (2004), Cambridge: Cambridge University Press, Cambridge
[32] Susskind, L., (2003)
[33] Douglas, M. R.; Shiffman, B.; Zelditch, S., Commun. Math. Phys., 252, 325, (2004) · Zbl 1103.32011 · doi:10.1007/s00220-004-1228-y
[34] Fyodorov, Y. V.; Khoruzhenko, B. A., Proc. Natl Acad. Sci., 113, 6827, (2016) · Zbl 1355.92139 · doi:10.1073/pnas.1601136113
[35] Fischer, K. H.; Hertz, J. A., Spin Glasses, (1991), Cambridge: Cambridge University Press, Cambridge
[36] Edwards, S. F.; Jones, R. C., J. Phys. A: Math. Gen., 9, 1595, (1976) · Zbl 0346.60003 · doi:10.1088/0305-4470/9/10/011
[37] Semerjian, G.; Cugliandolo, L. F., J. Phys. A: Math. Gen., 35, 4837, (2002) · Zbl 1066.82019 · doi:10.1088/0305-4470/35/23/303
[38] Slanina, F., Phys. Rev. E, 83, (2011) · doi:10.1103/PhysRevE.83.011118
[39] Semerjian, G.; Cugliandolo, L. F., Europhys. Lett., 61, 247, (2003) · doi:10.1209/epl/i2003-00226-8
[40] Kuehn, R., Acta Phys. Pol. B, 46, 1653, (2015) · Zbl 1371.60021 · doi:10.5506/APhysPolB.46.1653
[41] Mézard, M.; Parisi, G.; Virasoro, M. A., Spin Glass Theory and Beyond: an Introduction to the Replica Method and its Applications, (1986), Singapore: World Scientific, Singapore
[42] Shukla, P.; Singh, S., J. Phys. C: Solid State Phys., 14, L81, (1981) · doi:10.1088/0022-3719/14/4/004
[43] Ciuchi, S.; di Pasquale, F., Nucl. Phys. B, 300, 31, (1988) · doi:10.1016/0550-3213(88)90585-8
[44] Cugliandolo, L. F.; Dean, D. S., J. Phys. A: Math. Gen., 28, 4213, (1995) · Zbl 0925.82197 · doi:10.1088/0305-4470/28/15/003
[45] Fyodorov, Y. V.; Perret, A.; Schehr, G., J. Stat. Mech., (2015) · doi:10.1088/1742-5468/2015/11/p11017
[46] Dembo, A.; Guionnet, A.; Mazza, C., J. Stat. Phys., 126, 781, (2007) · Zbl 1153.82025 · doi:10.1007/s10955-006-9228-2
[47] Bray, A. J., Adv. Phys., 43, 357, (1994) · doi:10.1080/00018739400101505
[48] Onuki, A., Phase Transition Dynamics, (2004), Cambridge: Cambridge University Press, Cambridge
[49] Puri, S.; Wadhawan, V., Kinetics of Phase Transitions, (2009), London: Taylor and Francis, London
[50] Corberi, F.; Politi, P., C. R. Phys., 16, 255, (2015) · doi:10.1016/j.crhy.2015.05.003
[51] Cugliandolo, L. F.; Kurchan, J.; Peliti, L., Phys. Rev. E, 55, 3898, (1997) · doi:10.1103/PhysRevE.55.3898
[52] Cugliandolo, L. F., J. Phys. A: Math. Theor., 44, (2011) · Zbl 1238.82012 · doi:10.1088/1751-8113/44/48/483001
[53] Berges, J.; Giamarchi, T., Strongly Interacting Quantum Systems Out of Equilibrium, (2015)
[54] Boyanovsky, D.; Destri, C.; de Vega, H. J., Phys. Rev. D, 69, (2004) · doi:10.1103/PhysRevD.69.045003
[55] Boyanovsky, D.; de Vega, H. J.; Holman, R.; Salgado, J., Phys. Rev. D, 59, (1999) · doi:10.1103/PhysRevD.59.125009
[56] Sciolla, B.; Biroli, G., Phys. Rev. Lett., 105, (2010) · doi:10.1103/PhysRevLett.105.220401
[57] Sciolla, B.; Biroli, G., J. Stat. Mech., (2011) · doi:10.1088/1742-5468/2011/11/p11003
[58] Sciolla, B.; Biroli, G., Phys. Rev. B, 88, (2013) · doi:10.1103/PhysRevB.88.201110
[59] Chandran, A.; Nanduri, A.; Gubser, S. S.; Sondhi, S. L., Phys. Rev. B, 88, (2013) · doi:10.1103/PhysRevB.88.024306
[60] Maraga, A.; Chiocchetta, A.; Mitra, A.; Gambassi, A., Phys. Rev. E, 92, (2015) · doi:10.1103/PhysRevE.92.042151
[61] Chiocchetta, A.; Tavora, M.; Gambassi, A.; Mitra, A., Phys. Rev. B, 94, (2016) · doi:10.1103/PhysRevB.94.134311
[62] Chiocchetta, A.; Gambassi, A.; Diehl, S.; Marino, J., Phys. Rev. Lett., 118, (2017) · doi:10.1103/PhysRevLett.118.135701
[63] Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems, (2009), Cambridge: Cambridge University Press, Cambridge
[64] Dunajski, M., Integrable Systems, (2012), Cambridge: Cambridge University Lectures, Cambridge
[65] Arnold, V. I., Mathematical Methods of Classical Mechanics, (1978), Berlin: Springer, Berlin · Zbl 0386.70001
[66] Yuzbashyan, E., Ann. Phys., 367, 288, (2016) · Zbl 1378.81048 · doi:10.1016/j.aop.2016.02.002
[67] Khinchin, A., Mathematical Foundations of Statistical Mechanics, (1949), New York: Dover, New York · Zbl 0037.41102
[68] Kubo, R., Rep. Prog. Phys., 29, 255, (1966) · Zbl 0163.23102 · doi:10.1088/0034-4885/29/1/306
[69] Foini, L.; Gambassi, A.; Konik, R.; Cugliandolo, L. F., Phys. Rev. E, 95, (2017) · doi:10.1103/PhysRevA.95.052116
[70] de Nardis, J., SciPost, 3, 023, (2017) · doi:10.21468/SciPostPhys.3.3.023
[71] Barrat, A., The p-spin spherical spin glass model, (1997)
[72] Cugliandolo, L. F.; Kurchan, J., Phil. Mag. B, 71, 501, (1995) · doi:10.1080/01418639508238541
[73] Castellani, T.; Cavagna, A., J. Stat. Mech., (2005) · doi:10.1088/1742-5468/2005/05/p05012
[74] Houghton, A.; Jain, S.; Young, A. P., Phys. Rev. B, 28, 2630, (1983) · doi:10.1103/PhysRevB.28.2630
[75] Franz, S.; Parisi, G., J. Physique I, 5, 1401, (1995) · doi:10.1051/jp1:1995201
[76] Barrat, A.; Burioni, R.; Mézard, M., J. Phys. A: Math. Gen., 29, L81, (1996) · Zbl 0943.82577 · doi:10.1088/0305-4470/29/7/005
[77] Ermakov, V. P., Applicable Analysis and Discrete Mathematics, 2, 123-145, (2008) · Zbl 1199.34004 · doi:10.2298/AADM0802123E
[78] Milne, W., Phys. Rev., 35, 863, (1930) · doi:10.1103/PhysRev.35.863
[79] Pinney, E., Proc. Am. Math. Soc., 1, 681, (1950) · Zbl 0038.24303 · doi:10.1090/S0002-9939-1950-0037979-4
[80] Sotiriadis, S.; Cardy, J., Phys. Rev. B, 81, (2010) · doi:10.1103/PhysRevB.81.134305
[81] Eckstein, M.; Kollar, M.; Werner, P., Phys. Rev. Lett., 103, (2009) · doi:10.1103/PhysRevLett.103.056403
[82] Schiró, M.; Fabrizio, M., Phys. Rev. Lett., 105, (2010) · doi:10.1103/PhysRevLett.105.076401
[83] Tsuji, N.; Eckstein, M.; Werner, P., Phys. Rev. Lett., 110, (2013) · doi:10.1103/PhysRevLett.110.136404
[84] Tsuji, N.; Werner, P., Phys. Rev. B, 88, (2013) · doi:10.1103/PhysRevB.88.165115
[85] Aron, C.; Biroli, G.; Cugliandolo, L. F., J. Stat. Mech., (2010) · doi:10.1088/1742-5468/2010/11/p11018
[86] Calabrese, P.; Gambassi, A., J. Phys. A: Math. Gen., 38, R133, (2005) · Zbl 1067.82033 · doi:10.1088/0305-4470/38/1/009
[87] Corberi, F.; Lippiello, E.; Zannetti, M., J. Stat. Mech., (2007) · doi:10.1088/1742-5468/2007/07/p07002
[88] Babelon, O., (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.