×

Dynamical off-equilibrium scaling across magnetic first-order phase transitions. (English) Zbl 1457.82302

Summary: We investigate the off-equilibrium dynamics of a classical spin system with \(O(n)\) symmetry in \(2<D<4\) spatial dimensions and in the limit \(n\rightarrow\infty \). The system is set up in an ordered equilibrium state and is subsequently driven out of equilibrium by slowly varying the external magnetic field \(h\) across the transition line \(h_{\text c}=0\) at fixed temperature \(T\leqslant T_{\text c}\). We distinguish the cases \(T=T_{\text c}\) where the magnetic transition is continuous and \(T<T_{\text c}\) where the transition is discontinuous. In the former case, we apply a standard Kibble-Zurek approach to describe the non-equilibrium scaling and formally compute the correlation functions and scaling relations. For the discontinuous transition we develop a scaling theory which builds on the coherence length rather than the correlation length since the latter remains finite for all times. Finally, we derive the off-equilibrium scaling relations for the hysteresis loop area during a round-trip protocol that takes the system across its phase transition and back. Remarkably, our results are valid beyond the large-\(n\) limit.

MSC:

82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)

References:

[1] Amit, D., Field Theory, the Renormalization Group, and Critical Phenomena, (1984), Singapore: World Scientific, Singapore
[2] Cardy, J. L., Scaling and Renormalisation in Statistical Physics, (1996), Cambridge: Cambridge University Press, Cambridge
[3] Sachdev, S., Quantum Phase Transitions, (2001), Cambridge: Cambridge University Press, Cambridge
[4] Nishimori, H.; Ortiz, G., Elements of Phase Transitions and Critical Phenomena, (2011), Oxford: Oxford University Press, Oxford · Zbl 1276.82001
[5] Wipf, A., Statistical Approach to Quantum Field Theory, (2013), Heidelberg: Springer, Heidelberg · Zbl 1268.81005
[6] Henkel, M.; Hinrichsen, H.; Lübeck, S., Non-Equilibrium Phase Transitions: Volume 1: Absorbing Phase Transitions, (2009), Heidelberg: Springer, Heidelberg
[7] Henkel, M.; Pleimling, M., Non-Equilibrium Phase Transitions: Volume 2: Ageing and Dynamical Scaling Far from Equilibrium, (2010), Heidelberg: Springer, Heidelberg · Zbl 1204.82001
[8] Cugliandolo, L. F.; Barrat, J-L, Slow Relaxations and Non-Equilibrium Dynamics in Condensed Matter, 367-521, (2003), Heidelberg: Springer, Heidelberg
[9] Täuber, U. C., Critical Dynamics, (2014), Cambridge: Cambridge University Press, Cambridge
[10] Struik, L. C E., Polym. Eng. Sci., 17, 165, (1978)
[11] Bray, A., Adv. Phys., 43, 357, (1994) · doi:10.1080/00018739400101505
[12] Cates, M.; Evans, M., Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow (PBK), (2000), London: Taylor and Francis, London
[13] Godrèche, C.; Luck, J. M., J. Phys.: Condens. Matter, 14, 1589, (2002) · doi:10.1088/0953-8984/14/7/316
[14] Paessens, M.; Henkel, M., J. Phys. A: Math. Gen., 36, 8983, (2003) · Zbl 1049.82057 · doi:10.1088/0305-4470/36/34/304
[15] Breuer, H.; Petruccione, F., The Theory of Open Quantum Systems, (2007), Oxford: Oxford University Press, Oxford · Zbl 1223.81001
[16] Schaller, G., Open Quantum Systems Far from Equilibrium, (2014), Berlin: Springer, Berlin · Zbl 1290.81003
[17] Gagel, P.; Orth, P. P.; Schmalian, J., Phys. Rev. B, 92, (2015) · doi:10.1103/PhysRevB.92.115121
[18] Maraga, A., Phys. Rev. E, 92, (2015) · doi:10.1103/PhysRevE.92.042151
[19] Chiocchetta, A., Phys. Rev. Lett., 118, (2017) · doi:10.1103/PhysRevLett.118.135701
[20] Gagel, P.; Orth, P. P.; Schmalian, J., Phys. Rev. Lett., 113, (2014) · doi:10.1103/PhysRevLett.113.220401
[21] Wald, S.; Henkel, M., J. Phys. A: Math. Theor., 49, (2016) · Zbl 1343.81153 · doi:10.1088/1751-8113/49/12/125001
[22] Wald, S.; Landi, G. T.; Henkel, M., J. Stat. Mech., (2018) · Zbl 1459.82202 · doi:10.1088/1742-5468/aa9f44
[23] Wald, S., Phys. Rev. A, 97, (2018) · doi:10.1103/PhysRevA.97.023608
[24] Gardiner, C.; Zoller, P., Quantum Noise: a Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, (2004), Berlin: Springer, Berlin · Zbl 1072.81002
[25] Godrèche, C.; Luck, J. M., J. Phys. A: Math. Gen., 33, 9141, (2000) · Zbl 0960.82020 · doi:10.1088/0305-4470/33/50/302
[26] Godrèche, C.; Luck, J. M., J. Stat. Mech., (2013) · doi:10.1088/1742-5468/2013/05/p05006
[27] Kibble, T. W B., J. Phys. A: Math. Gen., 9, 1387, (1976) · Zbl 0333.57005 · doi:10.1088/0305-4470/9/8/029
[28] Kibble, T. W B., Phys. Rep., 67, 183, (1980) · doi:10.1016/0370-1573(80)90091-5
[29] Kibble, T. W B., Lectures at NATO ASI ‘Patterns of symmetry breaking’ (Cracow), (2002)
[30] Zurek, W. H., Nature, 317, 505, (1985) · doi:10.1038/317505a0
[31] Zurek, W. H., Phys. Rep., 276, 177, (1996) · doi:10.1016/S0370-1573(96)00009-9
[32] Donadello, S., Phys. Rev. A, 94, (2016) · doi:10.1103/PhysRevA.94.023628
[33] Lamporesi, G., Nat. Phys., 9, 656, (2013) · doi:10.1038/nphys2734
[34] Pyka, K., Nat. Commun., 4, 2291, (2013) · doi:10.1038/ncomms3291
[35] Corman, L., Phys. Rev. Lett., 113, (2014) · doi:10.1103/PhysRevLett.113.135302
[36] Cui, J. M., Sci. Rep., 6, 33381, (2016) · doi:10.1038/srep33381
[37] Calabrese, P.; Gambassi, A., Phys. Rev. B, 66, (2002) · doi:10.1103/PhysRevB.66.212407
[38] Wald, S.; Henkel, M., Integr. Transf. Spec. F, 29, 95, (2018) · Zbl 1384.33029 · doi:10.1080/10652469.2017.1404596
[39] Calabrese, P.; Gambassi, A., J. Phys. A: Math. Gen., 38, R133, (2005) · Zbl 1067.82033 · doi:10.1088/0305-4470/38/1/009
[40] Zurek, W. H.; Dorner, U.; Zoller, P., Phys. Rev. Lett., 95, (2005) · doi:10.1103/PhysRevLett.95.105701
[41] Polkovnikov, A., Phys. Rev. B, 72, (2005) · doi:10.1103/PhysRevB.72.161201
[42] Dziarmaga, J., Phys. Rev. Lett., 95, (2005) · doi:10.1103/PhysRevLett.95.245701
[43] Damski, B., Phys. Rev. Lett., 95, (2005) · doi:10.1103/PhysRevLett.95.035701
[44] Dziarmaga, J., Adv. Phys., 59, 1063, (2010) · doi:10.1080/00018732.2010.514702
[45] Polkovnikov, A., Rev. Mod. Phys., 83, 863, (2011) · doi:10.1103/RevModPhys.83.863
[46] Beugnon, J.; Navon, N., J. Phys. B: At. Mol. Opt. Phys., 50, (2017) · doi:10.1088/1361-6455/50/2/022002
[47] Zurek, W. H., Phys. Rev. Lett., 102, (2009) · doi:10.1103/PhysRevLett.102.105702
[48] Del Campo, A.; Retzker, A.; Plenio, M. B., New J. Phys., 13, (2011) · doi:10.1088/1367-2630/13/8/083022
[49] Scopa, S.; Karevski, D., J. Phys. A: Math. Theor., 50, (2017) · Zbl 1386.81158 · doi:10.1088/1751-8121/aa890f
[50] Landig, R., Nature, 532, 476, (2016) · doi:10.1038/nature17409
[51] Hruby, L., Proc. Natl Acad. Sci., 115, 3279, (2018) · doi:10.1073/pnas.1720415115
[52] Landini, M., Phys. Rev. Lett., 120, (2018) · doi:10.1103/PhysRevLett.120.223602
[53] Huang, Y., Phys. Rev. B, 90, (2014) · doi:10.1103/PhysRevB.90.134108
[54] Gong, S., New J. Phys., 12, (2010) · doi:10.1088/1367-2630/12/4/043036
[55] Feng, B.; Yin, S.; Zhong, F., Phys. Rev. B, 94, (2016) · doi:10.1103/PhysRevB.94.144103
[56] Nienhuis, B.; Nauenberg, M., Phys. Rev. Lett., 35, 477, (1975) · doi:10.1103/PhysRevLett.35.477
[57] Fisher, M. E.; Berker, A. N., Phys. Rev. B, 26, 2507, (1982) · doi:10.1103/PhysRevB.26.2507
[58] Privman, V.; Fisher, M. E., J. Stat. Phys., 33, 385, (1983) · doi:10.1007/BF01009803
[59] Binder, K., Rep. Prog. Phys., 50, 783, (1987) · doi:10.1088/0034-4885/50/7/001
[60] Zhong, F.; Zhang, J., Phys. Rev. Lett., 75, 2027, (1995) · doi:10.1103/PhysRevLett.75.2027
[61] Zhong, F.; Chen, Q., Phys. Rev. Lett., 95, (2005) · doi:10.1103/PhysRevLett.95.175701
[62] Zhong, F., Phys. Rev. E, 73, (2006) · doi:10.1103/PhysRevE.73.047102
[63] Zhong, F., (2018)
[64] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena, (2012), Oxford: Clarendon, Oxford
[65] Stanley, H. E., Phys. Rev. Lett., 20, 589, (1968) · doi:10.1103/PhysRevLett.20.589
[66] Stanley, H. E., Phys. Rev., 176, 718, (1968) · doi:10.1103/PhysRev.176.718
[67] Baxter, R. J., Exactly Solved Models in Statistical Mechanics, (1982), London: Academic, London · Zbl 0538.60093
[68] Oliveira, M. H.; Raposo, E. P.; Coutinho-Filho, M. D., Phys. Rev. B, 74, (2006) · doi:10.1103/PhysRevB.74.184101
[69] Vojta, T., Phys. Rev. B, 53, 710, (1996) · doi:10.1103/PhysRevB.53.710
[70] Berlin, T. H.; Kac, M., Phys. Rev., 86, 821, (1952) · Zbl 0047.45703 · doi:10.1103/PhysRev.86.821
[71] Lewis, H. W.; Wannier, G. H., Phys. Rev., 88, 682, (1952) · Zbl 0047.23804 · doi:10.1103/PhysRev.88.682.2
[72] Wald, S.; Henkel, M., J. Stat. Mech., (2015) · doi:10.1088/1742-5468/2015/07/p07006
[73] Henkel, M.; Hoeger, C., Z. Phys. B, 55, 67, (1984) · doi:10.1007/BF01307503
[74] Moshe, M.; Zinn-Justin, J., Phys. Rep., 385, 69, (2003) · Zbl 1031.81065 · doi:10.1016/S0370-1573(03)00263-1
[75] Pelissetto, A.; Vicari, E., Phys. Rev. E, 93, (2016) · doi:10.1103/PhysRevE.93.032141
[76] Chandran, A., Phys. Rev. B, 86, (2012) · doi:10.1103/PhysRevB.86.064304
[77] Mazenko, G. F.; Zannetti, M., Phys. Rev. B, 32, 4565, (1985) · doi:10.1103/PhysRevB.32.4565
[78] Guida, R.; Zinn-Justin, J., J. Phys. A: Math. Gen., 31, 8103, (1998) · Zbl 0978.82037 · doi:10.1088/0305-4470/31/40/006
[79] Cardy, J., Scaling and Renormalization in Statistical Physics, (1996), Cambridge: Cambridge University Press, Cambridge
[80] Dhar, D.; Thomas, P. B., J. Phys. A: Math. Gen., 25, 4967, (1992) · doi:10.1088/0305-4470/25/19/012
[81] Bloch, F., Z. Phys., 61, 206, (1930) · JFM 56.1319.02 · doi:10.1007/BF01339661
[82] Bloch, F., Z. Phys., 74, 295, (1932) · Zbl 0003.42303 · doi:10.1007/BF01337791
[83] Hamp, J., Phys. Rev. B, 92, (2015) · doi:10.1103/PhysRevB.92.075142
[84] Pelissetto, A.; Vicari, E., Phys. Rep., 368, 549, (2002) · Zbl 0997.82019 · doi:10.1016/S0370-1573(02)00219-3
[85] Campostrini, M., Phys. Rev. B, 63, (2001) · doi:10.1103/PhysRevB.63.214503
[86] Toldin, F. P.; Pelissetto, A.; Vicari, E., J. High Energy Phys., JHEP07(2003), 029, (2003) · doi:10.1088/1126-6708/2003/07/029
[87] Panagopoulos, H.; Vicari, E., Phys. Rev. E, 92, (2015) · doi:10.1103/PhysRevE.92.062107
[88] Pelissetto, A.; Vicari, E., Phys. Rev. Lett., 118, (2017) · doi:10.1103/PhysRevLett.118.030602
[89] Pelissetto, A.; Vicari, E., Phys. Rev. E, 96, (2017) · doi:10.1103/PhysRevE.96.012125
[90] Pelissetto, A.; Rossini, D.; Vicari, E., Phys. Rev. E, 97, (2018) · doi:10.1103/PhysRevE.97.052148
[91] Dogra, N., Phys. Rev. A, 94, (2016) · doi:10.1103/PhysRevA.94.023632
[92] Niederle, A. E.; Morigi, G.; Rieger, H., Phys. Rev. A, 94, (2016) · doi:10.1103/PhysRevA.94.033607
[93] Flottat, T., Phys. Rev. B, 95, (2017) · doi:10.1103/PhysRevB.95.144501
[94] Collura, M.; Karevski, D., Phys. Rev. Lett., 104, (2010) · doi:10.1103/PhysRevLett.104.200601
[95] Campostrini, M.; Vicari, E., Phys. Rev. A, 81, (2010) · doi:10.1103/PhysRevA.81.023606
[96] Campostrini, M.; Vicari, E., Phys. Rev. A, 82, (2010) · doi:10.1103/PhysRevA.82.063636
[97] Weiler, C. N., Nature, 455, 948, (2008) · doi:10.1038/nature07334
[98] Scherer, D. R., Phys. Rev. Lett., 98, (2007) · doi:10.1103/PhysRevLett.98.110402
[99] Carretero-González, R., Phys. Rev. A, 77, (2008) · doi:10.1103/PhysRevA.77.033625
[100] Thomas, P. B.; Dhar, D., J. Phys. A: Math. Gen., 26, 3973, (1993) · doi:10.1088/0305-4470/26/16/014
[101] Press, W. H.; Vetterling, W. V.; Teukolsky, S. A.; Flannery, B., Numerical Recipes, (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0778.65003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.