×

A Lagrangian flight simulator for airborne wind energy systems. (English) Zbl 1461.70006

Summary: A parallelized flight simulator for the dynamic analysis of airborne wind energy (AWE) systems for ground- and fly-generation configurations is presented. The mechanical system comprises a kite or fixed-wing drone equipped with rotors and linked to the ground by a flexible tether. The time-dependent control vector of the simulator mimics real AWE systems and it includes the length of the main tether, the geometry of the bridle, the torque of the motor controllers of the rotors, and the deflections of ailerons, rudder and elevator. The use of a Lagrangian formulation with a minimal coordinate approach and discretizing the main tether as a chain of inelastic straight rods linked by ideal (dissipative-less) rotational joints, yielded a non-stiff set of ordinary differential equations free of algebraic constraints. Several verification tests, including a reel-in maneuver that admits an analytical solution, are presented. The efficiency of the parallelization with the number of tether segments, and trade-off analysis of the Lagrangian and Hamiltonian formulations are also considered. The versatility of the simulator is highlighted by analyzing two maneuvers that are relevant for AWE scenarios. First, the simulator is used to compute periodic figure-of-eight trajectories with an open-loop control law that varies the geometry of the kite’s bridle, as frequently done in ground-generation AWE systems. Second, an unstable equilibrium state of a tethered drone equipped with two rotors for energy harvesting is stabilized by implementing a closed-loop control strategy for the deflection of the control aerodynamic surfaces.

MSC:

70B10 Kinematics of a rigid body

References:

[1] Cherubini, A.; Papini, A.; Vertechy, R.; Fontana, M., Airborne wind energy systems: A review of the technologies, Renew. Sustain. Energy Rev., 51, 1461-1476 (2015)
[2] (Diehl, M.; Leuthold, R.; Schmehl, R., Proceedings of the International Airborne Wind Energy Conference 2017: Book of Abstracts, Freiburg, Germany (2017))
[3] Sieg, C.; Gehrmann, T.; Bechtle, P.; Zillmann, U., Awesome: an affordable standardized open-source test platform for awe systems, (Diehl, M.; Leuthold, R.; Schmehl, R., Proceedings of the Book of Abstracts of the International Airborne Wind Energy Conference 2017 (2017), Albert Ludwig University Freiburg and Delft University of Technology: Albert Ludwig University Freiburg and Delft University of Technology Freiuburg, Germany), 1-188
[4] Winter, M.; Schmidt, E.; Silva de Oliveira, R., An open-source software platform for awe systems, (Diehl, M.; Leuthold, R.; Schmehl, R., Proceedings of the Book of Abstracts of the International Airborne Wind Energy Conference 2017 (2017), Albert Ludwig University Freiburg and Delft University of Technology: Albert Ludwig University Freiburg and Delft University of Technology Freiuburg, Germany), 1-188
[5] Fechner, U.; van der Vlugt, R.; Schreuder, E.; Schmehl, R., Dynamic model of a pumping kite power system, Renew. Energy, 83, 705-716 (2015)
[6] A. Okholm, Kite energy simulator, 2017, (https://github.com/kitextech/kitesim).
[7] 10.4233/uuid:85efaf4c-9dce-4111-bc91-7171b9da4b77
[8] Loyd, M. L., Crosswind kite power, J. Energy, 4, 3, 24-30 (1980)
[9] Ahmed, M. S.; Hably, A.; Bacha, S., Kite generator system modeling and grid integration, IEEE Trans. Sustain. Energy, 4, 4, 968-976 (2013)
[10] Fagiano, L.; Zgraggen, A.; Morari, M.; Khammash, M., Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design, and experimental results, IEEE Trans. Control Syst. Technol., 22, 4, 1433-1447 (2014)
[11] Ilzhöfer, A.; Houska, B.; Diehl, M., Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators, Int. J. Robust Nonlinear Control, 17, 17, 1590-1599 (2007) · Zbl 1131.93333
[12] Sánchez-Arriaga, G., Dynamics and control of single line kites, Aeronaut. J., 110, 1111, 615-621 (2006)
[13] Terink, E.; Breukels, J.; Schmehl, R.; Ockels, W., Flight dynamics and stability of a tethered inflatable kiteplane, AIAA J. Aircr., 48, 2, 503-513 (2011)
[14] Salord Losantos, L.; Sánchez-Arriaga, G., Flight dynamics and stability of kites in steady and unsteady wind conditions, J. Aircr., 52, 2, 660-666 (2015)
[15] Pastor-Rodríguez, A.; Sánchez-Arriaga, G.; Sanjurjo-Rivo, M., Modeling and stability analysis of tethered kites at high-altitudes, J. Guid. Control Dyn., 40, 8, 1892-1901 (2017)
[16] de Groot, S. G.C.; Breukels, J.; Schmehl, R.; Ockels, W., Modeling kite flight dynamics using a multibody reduction approach, J. Guid. Control Dyn., 34, 6, 1671-1682 (2011)
[17] F. Gohl, R.H. Luchsinger, Simulation Based Wing Design for Kite Power, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 325-338. doi:10.1007/978-3-642-39965-7_18.
[18] Williams, P.; Lansdorp, B.; Ockels, W., Nonlinear control and estimation of a tethered kite in changing wind conditions, J. Guid. Control Dyn., 31, 3, 793-799 (2008)
[19] Zanon, M.; Gros, S.; Andersson, J.; Diehl, M., Airborne wind energy based on dual airfoils, IEEE Trans. Control Syst. Technol., 21, 4, 1215-1222 (2013)
[20] Beletsky, V.; Levin, E.; Society, A. A., Dynamics of Space Tether Systems. Dynamics of Space Tether Systems, Advances in astronautical sciences (1993), Published for the American Astronautical Society by Univelt, Inc.
[21] Peláez, J.; López-Rebollal, O.; Lorenzini, E.; Cosmos, M. L., Two-bar model for the dynamics and stability of electrodynamic tethers, J. Guid. Control Dyn., 25, 6, 1125-1135 (2002)
[22] Puig-Suari, J.; Logunski, J. M.; Tragesser, S. G., Aerocapture with a flexible tether, J. Guid. Control Dyn., 18, 1305-1312 (1995) · Zbl 0844.70019
[23] Biswell, B. L.; Puig-Suari, J.; Longuski, J. M.; Tragesser, S. G., Three-dimensional hinged-rod model for elastic aerobraking tethers, J. Guid. Control Dyn., 21, 286-295 (1998)
[24] Adomaitis, R. A., Kites and bifurcation theory, SIAM Rev., 31, 3, 478 (1989) · Zbl 0692.58021
[25] Williams, P.; Lansdorp, B.; Ockels, W., Optimal crosswind towing and power generation with tethered kites, J. Guid. Control Dyn., 31, 1, 81-93 (2008)
[26] Alonso-Pardo, J.; Sanchez-Arriaga, G., Kite model with bridle control for wind-power generation, J. Aircr., 52, 3, 917-923 (2015)
[27] Sánchez-Arriaga, G.; Garcia-Villalba, M.; Schmehl, R., Modelling and dynamics of a two-line kite, Appl. Math. Model., 47, 473-486 (2017) · Zbl 1446.70007
[28] Minakov, A. P., Fundamentals of the Thread Mechanics (1941), Moscow Textile Institute 9
[29] Sánchez-Arriaga, G.; Pastor-Rodríguez, A.; Borobia-Moreno, R.; Schmehl, R., A constraint-free flight simulator package for airborne wind energy systems, J. Phys. Conf. Ser., 1037, 6, 062018 (2018)
[30] G. Sánchez-Arriaga, A. Pastor-Rodríguez, Kiteflex, 2018, (https://github.com/apastor3/laksa).
[31] Lara, M.; Peláez, J., On the numerical continuation of periodic orbits. an intrinsic, 3-dimensional, differential, predictor-corrector algorithm, Astron. Astrophys., 389, 692-701 (2002) · Zbl 1214.70002
[32] M. Drela, H. Youngren, AVL: athena vortex lattice, 1988, (http://web.mit.edu/drela/Public/web/avl/).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.