×

High-precision continuation of periodic orbits. (English) Zbl 1248.65130

Summary: Obtaining periodic orbits of dynamical systems is the main source of information about how the orbits, in general, are organized. In this paper, we extend classical continuation algorithms in order to be able to obtain families of periodic orbits with high-precision. These periodic orbits can be corrected to get them with arbitrary precision. We illustrate the method with two important classical Hamiltonian problems.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
37C27 Periodic orbits of vector fields and flows
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems

Software:

MPFR; AUTO; TIDES; MATCONT

References:

[1] R. Barrio, F. Blesa, and S. Serrano, “Bifurcations and safe regions in open Hamiltonians,” New Journal of Physics, vol. 11, Article ID 053004, 2009. · Zbl 1173.37049 · doi:10.1088/1367-2630/11/5/053004
[2] R. Gilmore and M. Lefranc, The Topology of Chaos, John Wiley & Sons, New York, NY, USA, 2002. · Zbl 1019.37016
[3] K. Pyragas, “Control of chaos via an unstable delayed feedback controller,” Physical Review Letters, vol. 86, no. 11, pp. 2265-2268, 2001. · doi:10.1103/PhysRevLett.86.2265
[4] W. M. Zheng, “Predicting orbits of the Lorenz equation from symbolic dynamics,” Physica D, vol. 109, no. 1-2, pp. 191-198, 1997. · Zbl 0925.58018 · doi:10.1016/S0167-2789(97)00169-3
[5] D. A. Wisniacki, E. Vergini, R. M. Benito, and F. Borondo, “Signatures of homoclinic motion in quantum chaos,” Physical Review Letters, vol. 94, no. 5, Article ID 054101, 2005. · doi:10.1103/PhysRevLett.94.054101
[6] A. D. Peters, C. Jaffé, and J. B. Delos, “Closed-orbit theory and the photodetachment cross section of H- in parallel electric and magnetic fields,” Physical Review A, vol. 56, no. 1, pp. 331-344, 1997. · doi:10.1103/PhysRevA.56.331
[7] E. Kazantsev, “Sensitivity of the attractor of the barotropic ocean model to external influences: approach by unstable periodic orbits,” Nonlinear Processes in Geophysics, vol. 8, no. 4-5, pp. 281-300, 2001. · doi:10.5194/npg-8-281-2001
[8] J. Aguirre, R. L. Viana, and M. A. F. Sanjuán, “Fractal structures in nonlinear dynamics,” Reviews of Modern Physics, vol. 81, no. 1, pp. 333-386, 2009. · doi:10.1103/RevModPhys.81.333
[9] R. P. Russell, “Global search for planar and three-dimensional periodic orbits near Europa,” Journal of the Astronautical Sciences, vol. 54, no. 2, pp. 199-226, 2006.
[10] R. Barrio, F. Blesa, and S. Serrano, “Periodic, escape and chaotic orbits in the Copenhagen and the (n + 1)-body ring problems,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2229-2238, 2009. · Zbl 1221.70015 · doi:10.1016/j.cnsns.2008.07.007
[11] S. C. Farantos, “Methods for locating periodic orbits in highly unstable systems,” Journal of Molecular Structure, vol. 341, no. 1-3, pp. 91-100, 1995. · doi:10.1016/0166-1280(95)04206-L
[12] P. Schmelcher and F. K. Diakonos, “Detecting unstable periodic orbits of chaotic dynamical systems,” Physical Review Letters, vol. 78, no. 25, pp. 4733-4736, 1997. · Zbl 0899.58035 · doi:10.1103/PhysRevLett.78.4733
[13] R. L. Davidchack and Y. C. Lai, “Efficient algorithm for detecting unstable periodic orbits in chaotic systems,” Physical Review E, vol. 60, no. 5 B, pp. 6172-6175, 1999.
[14] D. Viswanath, “The Lindstedt-Poincaré technique as an algorithm for computing periodic orbits,” SIAM Review, vol. 43, no. 3, pp. 478-495, 2001. · Zbl 0979.65115 · doi:10.1137/S0036144500375292
[15] M. Lara and J. Peláez, “On the numerical continuation of periodic orbits: an intrinsic, 3-dimensional, differential, predictor-corrector algorithm,” Astronomy and Astrophysics, vol. 389, no. 2, pp. 692-701, 2002. · Zbl 1214.70002 · doi:10.1051/0004-6361:20020598
[16] J. H. B. Deane and L. Marsh, “Unstable periodic orbit detection for ODEs with periodic forcing,” Physics Letters, Section A, vol. 359, no. 6, pp. 555-558, 2006. · Zbl 1236.34060 · doi:10.1016/j.physleta.2006.06.088
[17] Y. Saiki, “Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors,” Nonlinear Processes in Geophysics, vol. 14, no. 5, pp. 615-620, 2007. · doi:10.5194/npg-14-615-2007
[18] R. Barrio and F. Blesa, “Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems,” Chaos, Solitons and Fractals, vol. 41, no. 2, pp. 560-582, 2009. · Zbl 1198.37091 · doi:10.1016/j.chaos.2008.02.032
[19] A. Abad, R. Barrio, and A. Dena, “Computing periodic orbits with arbitrary precision,” Physical Review E, vol. 84, no. 1, Article ID 016701, 2011. · Zbl 1253.37076 · doi:10.1103/PhysRevE.84.016701
[20] J. N. L. Connor and D. Farrelly, “Uniform semiclassical and quantum calculations of Regge pole positions and residues for complex optical nuclear heavy-ion potentials,” Physical Review C, vol. 48, no. 5, pp. 2419-2432, 1993. · doi:10.1103/PhysRevC.48.2419
[21] D. Sokolovski, “Complex-angular-momentum analysis of atom-diatom angular scattering: zeros and poles of the S matrix,” Physical Review A, vol. 62, no. 2, Article ID 024702, 2000. · doi:10.1103/PhysRevA.62.024702
[22] G. L. Alfimov, D. Usero, and L. Vázquez, “On complex singularities of solutions of the equation Hux - u+up=0,” Journal of Physics A, vol. 33, no. 38, pp. 6707-6720, 2000. · Zbl 0972.45005 · doi:10.1088/0305-4470/33/38/305
[23] D. Viswanath and S. \cSahuto\vglu, “Complex singularities and the lorenz attractor,” SIAM Review, vol. 52, no. 2, pp. 294-314, 2010. · Zbl 1202.34153 · doi:10.1137/090753474
[24] V. Gelfreich and C. Simó, “High-precision computations of divergent asymptotic series and homoclinic phenomena,” Discrete and Continuous Dynamical Systems - Series B, vol. 10, no. 2-3, pp. 511-536, 2008. · Zbl 1169.37013 · doi:10.3934/dcdsb.2008.10.511
[25] D. Viswanath, “The fractal property of the Lorenz attractor,” Physica D, vol. 190, no. 1-2, pp. 115-128, 2004. · Zbl 1041.37013 · doi:10.1016/j.physd.2003.10.006
[26] H. B. Keller, Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Academic Press, 1977. · Zbl 0581.65043
[27] J. Broeckhove, P. Kłosiewicz, and W. Vanroose, “Applying numerical continuation to the parameter dependence of solutions of the Schrödinger equation,” Journal of Computational and Applied Mathematics, vol. 234, no. 4, pp. 1238-1248, 2010. · Zbl 1190.65190 · doi:10.1016/j.cam.2009.07.054
[28] A. Abad, R. Barrio, F. Blesa, and M. Rodríguez, “TIDES Software,” http://gme.unizar.es/software/tides.
[29] A. Abad, R. Barrio, F. Blesa, and M. Rodríguez, “TIDES: a Taylor series Integrator for Differential Equations,” ACM Transactions on Mathematical Software. In press. · Zbl 1295.65138 · doi:10.1016/j.cam.2009.07.054
[30] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, Pa, USA, 1997. · Zbl 0879.65017
[31] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadelphia, Pa, USA, 1997. · Zbl 0874.65013
[32] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR: a multiple-precision binary floating-point library with correct rounding,” ACM Transactions on Mathematical Software, vol. 33, no. 2, article 13, p. 15, 2007. · Zbl 1365.65302 · doi:10.1145/1236463.1236468
[33] M. Hénon and C. Heiles, “The applicability of the third integral of motion: some numerical experiments,” The Astronomical Journal, vol. 69, pp. 73-79, 1964. · doi:10.1086/109234
[34] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Dover, New York, NY, USA, 1957. · Zbl 0079.23801
[35] R. Barrio, “Sensitivity tools vs. Poincaré sections,” Chaos, Solitons and Fractals, vol. 25, no. 3, pp. 711-726, 2005. · Zbl 1092.37531 · doi:10.1016/j.chaos.2004.11.092
[36] K. R. Meyer, “Generic bifurcation of periodic points,” Transactions of the American Mathematical Society, vol. 149, pp. 95-107, 1970. · Zbl 0198.42902 · doi:10.2307/1995662
[37] C. Wulff and A. Schebesch, “Numerical continuation of symmetric periodic orbits,” SIAM Journal on Applied Dynamical Systems, vol. 5, no. 3, pp. 435-475, 2006. · Zbl 1210.37034 · doi:10.1137/050637170
[38] E. Doedel, “AUTO: a program for the automatic bifurcation analysis of autonomous systems,” in Proceedings of the 10th Manitoba Conference on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980), vol. 30, pp. 265-284, 1981. · Zbl 0511.65064
[39] E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, B. Sandstede, and X. Wang, “AUTO 2000: continuation and bifurcation software for ordinary differential equations (with HomCont),” Tech. Rep., California Institute of Technology.
[40] A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, “MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs,” ACM Transactions on Mathematical Software, vol. 29, no. 2, pp. 141-164, 2003. · Zbl 1070.65574 · doi:10.1145/779359.779362
[41] B. Krauskopf, H. M. Osinga, and J. Galán-Vioque, Eds., Numerical Continuation Methods for Dynamical Systems, Springer, Dordrecht, The Netherlands, 2007. · Zbl 1117.65005
[42] F. J. Muñoz-Almaraz, E. Freire, J. Galán, E. Doedel, and A. Vanderbauwhede, “Continuation of periodic orbits in conservative and Hamiltonian systems,” Physica D, vol. 181, no. 1-2, pp. 1-38, 2003. · Zbl 1024.37037 · doi:10.1016/S0167-2789(03)00097-6
[43] E. J. Doedel, V. A. Romanov, R. C. Paffenroth et al., “Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 17, no. 8, pp. 2625-2677, 2007. · Zbl 1139.70006 · doi:10.1142/S0218127407018671
[44] M. Hénon, “Exploration numérique du problème restreint. I. Masses égales ; orbites périodiques,” Annales d’Astrophysique, vol. 28, p. 499, 1965. · Zbl 0138.23803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.