×

VSVO formulation of the Taylor method for the numerical solution of ODEs. (English) Zbl 1085.65056

Summary: This paper presents an analysis of the Taylor method for the numerical solution of ordinary differential equations (ODEs) when a very high precision of the solution is required. Some theoretical properties of the Taylor method are considered. From the practical point of view a variable-stepsize variable-order (VSVO) scheme is presented and its utility is discussed with several examples. To reach the goal of high precision the use of multiprecision libraries is considered. Finally, some numerical tests based on the test problems given by W. H. Enright and J. D. Pryce [ACM Trans. Math. Softw. 13, 1–27 (1987; Zbl 0617.65069)] and on a set of important problems in dynamical systems and astrodynamics are presented showing the benefits of the VSVO formulation, especially for high-precision demands, compared with a well established Runge-Kutta code.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations

Citations:

Zbl 0617.65069
Full Text: DOI

References:

[1] Enright, W. H.; Pryce, J. D., Two Fortran packages for assessing initial value problems, ACM Trans. Math. Software, 13, 1-27 (1987) · Zbl 0617.65069
[2] Broucke, R., Construction of rational and negative powers of a formal series, Comm. ACM, 14, 32-35 (1971) · Zbl 0219.68012
[3] Corliss, G. F.; Chang, Y. F., Solving ordinary differential equations using Taylor series, ACM Trans. Math. Software, 8, 114-144 (1982) · Zbl 0503.65046
[4] Chang, Y. F.; Corliss, G. F., ATOMFT: Solving ODEs and DAEs using Taylor series, Computers Math. Applic., 28, 209-233 (1994) · Zbl 0810.65072
[5] Jorba, A.; Zou, M., A software package for the numerical integration of ODE by means of high-order Taylor methods, In Technical Report, Department of Mathematics (2001), University of Texas: University of Texas London
[6] Lara, M.; Elipe, A.; Palacios, M., Automatic programming of recurrent power series, Math. Comput. Simul., 49, 351-362 (1999)
[7] Moore, R. A., Interval Analysis (1966), Prentice-Hall: Prentice-Hall Texas · Zbl 0176.13301
[8] Deprit, A.; Price, J. F., The computation of characteristic exponents in the planar restricted problem of three bodies, Astron. J., 70, 836-846 (1965)
[9] Deprit, A.; Zahar, R. M.V., Numerical integration of an orbit and its concomitant variations, Z. Angew. Math. Phys., 17, 425-430 (1966)
[10] Lara, M.; Peláez, J., On the numerical continuation of periodic orbits: An intrinsic, 3-dimensional, differential, predictor-corrector algorithm, Astron. Astrophys., 389, 692-701 (2002) · Zbl 1214.70002
[11] Lara, M., Repeat ground track orbits of the earth tesseral problem as bifurcations of the equatorial family of periodic orbits, Celestial Mech. Dynam. Astronom., 86, 143-162 (2003) · Zbl 1062.70609
[12] Choe, W. G.; Guckenheimer, J., Computing periodic orbits with high accuracy, Comput. Methods Appl. Mech. and Engrg., 170, 331-341 (1999) · Zbl 0954.65092
[13] Guckenheimer, J.; Meloon, B., Computing periodic orbits and their bifurcations with automatic differentiation, SIAM J. Sci. Comput., 22, 951-985 (2000) · Zbl 0976.65111
[14] Jorba, A., A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems, Experiment. Math., 8, 155-195 (1999) · Zbl 0983.37107
[15] Martínez, R.; Simó, C., Simultaneous binary collisions in the planar four-body problem, Nonlinearity, 12, 903-930 (1999) · Zbl 0951.70009
[16] Simó, C., Dynamical systems, numerical experiments and super-computing, (Preprints of the Barcelona UBUPC Dynamical Systems Group (2003))
[17] Simó, C.; Valls, C., A formal approximation of the splitting of separatrices in the classical Arnold’s example of diffusion with two equal parameters, Nonlinearity, 14, 1707-1760 (2001) · Zbl 1001.37051
[18] Bailey, D. H., A Fortran-90 based multiprecision system, ACM Trans. Math. Software, 21, 379-387 (1995) · Zbl 0883.68017
[19] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II (1991), Springer-Verlag: Springer-Verlag Englewood Cliffs, NJ · Zbl 0729.65051
[20] Barton, D., On Taylor series and stiff equations, ACM Trans. Math. Software, 6, 280-294 (1980) · Zbl 0434.65045
[21] Corliss, G. F.; Griewank, A.; Henneberger, P.; Kirlinger, G.; Potra, F. A.; Stetter, H. J., High-order stiff ODE solvers via automatic differentiation and rational prediction, (Numerical analysis and its applications, Lecture Notes in Comput. Sci., Volume 1196 (1997), Springer: Springer Berlin), 114-125 · Zbl 1540.65179
[22] Corliss, G. F.; Kirlinger, G., On implicit Taylor series methods for stiff ODEs, (Computer Arithmetic and Enclosure Methods (1992), North-Holland: North-Holland Berlin), 371-379, Oldenburg, (1991) · Zbl 0838.65075
[23] Barrio, R.; Elipe, A.; Palacios, M., Chebyshev collocation methods for fast orbit determination, Appl. Math. Comput., 99, 195-207 (1999) · Zbl 0944.65086
[24] Corliss, G.; Chang, Y. F., G-Stop facility in ATOMFT, a Taylor series ordinary differential equation solver,, (Fatunla, S. O., Computational Ordinary Differential Equations (1992), University Press: University Press Amsterdam), 37-77
[25] Morbidelli, A., Modern Celestical Mechanics (2002), Taylor and Francis: Taylor and Francis Champaign, IL · Zbl 1411.70019
[26] Wolfram, S., A System for doing mathematics by computer, (Mathematica (1998), Addison-Wesley: Addison-Wesley London) · Zbl 0671.65002
[27] Shampine, L. F.; Baca, L. S., Fixed versus variable order Runge-Kutta, ACM Trans. Math. Software, 12, 1-23 (1986) · Zbl 0594.65047
[28] Shampine, L. F.; Gordon, M. K., Computer Solution of Ordinary Differential Equations, The Initial Value Problem (1975), Freeman and Company: Freeman and Company Reading · Zbl 0347.65001
[29] Barrio, R., Performance of the Taylor series method for ODEs/DAEs, Appl. Math. Comput., 163, 525-545 (2005) · Zbl 1067.65063
[30] Corless, R. M.; Corliss, G., Rationale for guaranteed ODE defect control, (Atanassova, L.; Herzberger, J., Computer Arithmetic and Enclosure Methods, Proceedings of SCAN 1991: International Symposium on Computer Arithmetic and Scientific Computing. Computer Arithmetic and Enclosure Methods, Proceedings of SCAN 1991: International Symposium on Computer Arithmetic and Scientific Computing, Oldenburg (1992), North-Holland: North-Holland San Francisco, CA), 3-12 · Zbl 0838.65085
[31] Enright, W. H., Continuous numerical methods for ODEs with defect control, J. Comput. Appl. Math., 125, 159-170 (2000) · Zbl 0982.65078
[32] Stetter, H. J., Tolerance proportionality in ODE-codes, (März, R., Proceedings \(2^{nd}\) Conference on Numerical Treatment of Ordinary Differential Equations (1980), Humboldt University: Humboldt University Amsterdam), 109-123 · Zbl 0509.65037
[33] Calvo, M.; Higham, D. J.; Montijano, J. I.; Rández, L., Stepsize selection for tolerance proportionality in explicit Runge-Kutta codes, Adv. Comput. Math., 7, 361-382 (1997) · Zbl 0891.65097
[34] Griewank, A., Evaluating Derivatives (2000), SIAM: SIAM Berlin · Zbl 0958.65028
[35] Söderlind, G., Automatic control and adaptive time-stepping, Numer. Algorithms, 31, 281-310 (2002) · Zbl 1012.65080
[36] Eijgenraam, P., The solution of initial value problems using interval arithmetic, (Mathematical Centre Tracts No. 144 (1981), Stichting Mathematisch Centrum: Stichting Mathematisch Centrum Philadelphia, PA) · Zbl 0471.65043
[37] Bailey, D. H., Algorithm 719: Multiprecision translation and execution of Fortran programs, ACM Trans. Math. Software, 19, 288-319 (1993) · Zbl 0889.68015
[38] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving ordinary differential equations I, Nonstiff problems, (Springer Ser. Comput. Math. 8 (1993), Springer-Verlag: Springer-Verlag Amsterdam) · Zbl 1185.65115
[39] Arenstorf, R. F., Periodic solutions of the restricted three body problems representing analytic continuations of Keplerian elliptic motions, Amer. J. Math., LXXXV, 27-35 (1963) · Zbl 0116.15203
[40] Szebehely, V., Theory of Orbits, The Restricted Problem of Three Bodies (1967), Acad. Press: Acad. Press New York · Zbl 0202.56902
[41] Binney, J.; Tremaine, S., Galactic Dynamics (1987), Princeton Univ. Press: Princeton Univ. Press New York · Zbl 1130.85301
[42] Hénon, M.; Heiles, C., The applicability of the third integral of motion: Some numerical examples, Astron. J., 69, 73-79 (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.