×

Calculating the fundamental group of Galois cover of the (2,3)-embedding of \(\mathbb{CP}^1 \times T\). (English) Zbl 1477.14086

In the paper under review, the authors investigate the fundamental group of the Galois cover of the \((2,3)\)-embedding of \(X:=\mathbb{P}^{1}_{\mathbb{C}} \times T\), where \(T\) is a complex torus in \(\mathbb{P}^{2}_{\mathbb{C}}\). More precisely, since \(\mathbb{P}^{1}_{\mathbb{C}}\) can be embedded into \(\mathbb{P}^{m}_{\mathbb{C}}\) with \(m\geq 2\) and \(T\) can be embedded into \(\mathbb{P}^{n-1}_{\mathbb{C}}\) with \(n\geq 3\), then \(\mathbb{P}^{1}_{\mathbb{C}} \times T\) can be embedded into a larger projective space by the Segre embedding of \(\mathbb{P}^{m}_{\mathbb{C}} \times \mathbb{P}^{n-1}_{\mathbb{C}}\). Such an embedding is the \((m,n)\)-embedding of \(\mathbb{P}^{1}_{\mathbb{C}} \times T\) and one denotes the image of the embedding by \(X_{m,n}\). The resulting surface is of general type with index zero. In order to investigate the fundamental group, the authors apply Moishezon-Teicher’s algorithm combined with certain degeneration techniques.

MSC:

14N20 Configurations and arrangements of linear subspaces
14F35 Homotopy theory and fundamental groups in algebraic geometry
14J29 Surfaces of general type
14Q10 Computational aspects of algebraic surfaces
20F36 Braid groups; Artin groups
32S22 Relations with arrangements of hyperplanes
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
14H20 Singularities of curves, local rings
Full Text: DOI

References:

[1] Amram, M.; Ciliberto, C.; Miranda, R., Braid monodromy factorization for a non-prime K3 surface branch curve, Israel Journal of Mathematics, 170, 61-93 (2009) · Zbl 1205.14050 · doi:10.1007/s11856-009-0020-2
[2] Amram, M.; Friedman, M.; Teicher, M., The fundamental group of the branch curve of the complement of the surface ℂℙ^1 × T, Acta Mathematica Sinica, 25, 9, 1443-1458 (2009) · Zbl 1178.14018 · doi:10.1007/s10114-009-6473-8
[3] Amram, M.; Goldberg, D.; Teicher, M., The fundamental group of a Galois cover of ℂℙ^1 × T, Algebraic & Geometric Topology, 2, 403-432 (2002) · Zbl 1037.14006 · doi:10.2140/agt.2002.2.403
[4] Amram, M.; Goldberg, D., Higher degree Galois covers of ℂℙ^1 × T, Algebraic & Geometric Topology, 4, 841-859 (2004) · Zbl 1069.14065 · doi:10.2140/agt.2004.4.841
[5] Amram, M.; Shwartz, R.; Teicher, M., Coxeter covers of the classical Coxeter groups, International Journal of Algebra and Computation, 20, 1041-1062 (2010) · Zbl 1237.20031 · doi:10.1142/S0218196710006023
[6] Amram, M.; Teicher, M., The fundamental group of the complement of the branch curve of T × T in ℂ^2, Osaka Journal of Math., 40, 1-37 (2003)
[7] Amram, M.; Teicher, M., On the degeneration, regeneration and braid monodromy of T × T, Acta Appl. Math., 75, 195-270 (2003) · Zbl 1085.14504 · doi:10.1023/A:1022396230382
[8] Artin, E., Theory of braids, Ann. Math., 48, 101-126 (1947) · Zbl 0030.17703 · doi:10.2307/1969218
[9] Friedman, M.; Teicher, M., The regeneration of a 5-point, Pure and Applied Math. Quarterly, 4, 2, 383-425 (2008) · Zbl 1168.14022 · doi:10.4310/PAMQ.2008.v4.n2.a5
[10] Goncalves, D. L.; Guaschi, J., The braid groups of the projective plane, Algebraic & Geometric Topology, 4, 757-780 (2004) · Zbl 1056.20024 · doi:10.2140/agt.2004.4.757
[11] Kulikov, V.; Teicher, M., Braid monodromy factorizations and diffeomorphism types, Izv. Math., 64, 2, 311-341 (2000) · Zbl 1004.14005 · doi:10.1070/IM2000v064n02ABEH000285
[12] Moishezon, B.; Teicher, M., Galois covers in theory of algebraic surfaces, Proceedings of Symposia in Pure Math., 46, 47-65 (1987) · Zbl 0644.14012 · doi:10.1090/pspum/046.2/927973
[13] Moishezon, B.; Teicher, M., Simply connected algebraic surfaces of positive index, Invent. Math., 89, 601-643 (1987) · Zbl 0627.14019 · doi:10.1007/BF01388987
[14] Moishezon, B.; Teicher, M., Braid group technique in complex geometry I, Line arrangements in ℂℙ2, Contemporary Math., 78, 425-555 (1988) · Zbl 0674.14019 · doi:10.1090/conm/078/975093
[15] Moishezon, B.; Teicher, M., Braid group technique in complex geometry II, From arrangements of lines and conics to cuspidal curves, Algebraic Geometry, Lect. Notes in Math., 1479, 131-180 (1991) · Zbl 0764.14014 · doi:10.1007/BFb0086269
[16] Moishezon, B.; Teicher, M., Braid group technique in complex geometry III: Projective degeneration of V3, Contemp. Math., 162, 313-332 (1994) · Zbl 0815.14023 · doi:10.1090/conm/162/01540
[17] Moishezon, B.; Teicher, M., Braid group technique in complex geometry IV: Braid monodromy of the branch curve S3 of V3 → ℂℙ^2 and application to π_1(ℂ2 - S_3,*), Contemporary Math., 162, 332-358 (1994)
[18] Rowen, L.; Teicher, M.; Vishne, U., Coxeter covers of the symmetric groups, J. Group Theory, 8, 139-169 (2005) · Zbl 1120.20040 · doi:10.1515/jgth.2005.8.2.139
[19] Van Kampen, E. R., On the fundamental group of an algebraic curve, Amer. J. Math., 55, 255-260 (1933) · Zbl 0006.41502 · doi:10.2307/2371128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.