×

Links arising from braid monodromy factorizations. (English) Zbl 1307.14083

Braid monodromy plays a key role in the program initiated by Moishezon-Teicher of developing new topological invariants which differentiate between distinct components in the moduli space of surfaces of general type. In this paper the authors describe the local contribution of the braid monodromy factorization in the case of links obtained by the closure of braids. The cases of degenerations involving plane curve singularities of multiplicity two and three are carefully listed.

MSC:

14Q10 Computational aspects of algebraic surfaces
14N20 Configurations and arrangements of linear subspaces
32S25 Complex surface and hypersurface singularities
57M25 Knots and links in the \(3\)-sphere (MSC2010)

References:

[1] DOI: 10.1007/s11856-009-0020-2 · Zbl 1205.14050 · doi:10.1007/s11856-009-0020-2
[2] DOI: 10.1007/s10114-009-6473-8 · Zbl 1178.14018 · doi:10.1007/s10114-009-6473-8
[3] DOI: 10.1016/j.top.2009.03.002 · Zbl 1207.14017 · doi:10.1016/j.top.2009.03.002
[4] Amram M., Adv. Geom. Anal. 21 pp 307–
[5] DOI: 10.1007/s00209-007-0109-4 · Zbl 1129.57001 · doi:10.1007/s00209-007-0109-4
[6] M. Amram, D. Garber and M. Teicher, Configuration Spaces: Geometry, Combinatorics and Topology, Publications of the Scuola Normale Superiore 14, eds. A. Björner (Edizioni della Normale, 2013) pp. 27–48.
[7] DOI: 10.2140/agt.2004.4.841 · Zbl 1069.14065 · doi:10.2140/agt.2004.4.841
[8] DOI: 10.2140/agt.2002.2.403 · Zbl 1037.14006 · doi:10.2140/agt.2002.2.403
[9] DOI: 10.1090/conm/538/10595 · doi:10.1090/conm/538/10595
[10] Amram M., Michigan Math. J. 54 pp 587–
[11] Amram M., Osaka J. Math. 40 pp 857–
[12] DOI: 10.1023/A:1022396230382 · Zbl 1085.14504 · doi:10.1023/A:1022396230382
[13] DOI: 10.1016/S0166-8641(02)00218-3 · Zbl 1023.52008 · doi:10.1016/S0166-8641(02)00218-3
[14] DOI: 10.1142/S0218196707003780 · Zbl 1115.14053 · doi:10.1142/S0218196707003780
[15] DOI: 10.1142/S0218196708004895 · Zbl 1156.14310 · doi:10.1142/S0218196708004895
[16] DOI: 10.2307/1969218 · Zbl 0030.17703 · doi:10.2307/1969218
[17] DOI: 10.1007/978-94-010-1011-5_5 · doi:10.1007/978-94-010-1011-5_5
[18] DOI: 10.4310/PAMQ.2008.v4.n2.a5 · Zbl 1168.14022 · doi:10.4310/PAMQ.2008.v4.n2.a5
[19] DOI: 10.1142/S0218216502002190 · Zbl 1032.52012 · doi:10.1142/S0218216502002190
[20] DOI: 10.1007/BF01343552 · Zbl 0043.30302 · doi:10.1007/BF01343552
[21] DOI: 10.1007/978-0-387-68548-9 · Zbl 1208.20041 · doi:10.1007/978-0-387-68548-9
[22] DOI: 10.1090/conm/044/813122 · doi:10.1090/conm/044/813122
[23] DOI: 10.1007/BF01444235 · Zbl 0853.14007 · doi:10.1007/BF01444235
[24] DOI: 10.1007/BF01388987 · Zbl 0627.14019 · doi:10.1007/BF01388987
[25] DOI: 10.1090/conm/078/975093 · doi:10.1090/conm/078/975093
[26] DOI: 10.1007/BFb0086269 · doi:10.1007/BFb0086269
[27] DOI: 10.1090/conm/162/01540 · doi:10.1090/conm/162/01540
[28] DOI: 10.1090/conm/162/01541 · doi:10.1090/conm/162/01541
[29] DOI: 10.4310/CAG.1996.v4.n1.a1 · Zbl 0862.57002 · doi:10.4310/CAG.1996.v4.n1.a1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.