×

Robust invariance-based explicit reference control for constrained linear systems. (English) Zbl 1497.93089

Summary: In the linear system control, the traditional invariance-based explicit reference governor (ERG) method provides a solution to the control of a class of systems subject to state and control constraints, while there still exist some limitations on the form of system models, which hinders its wider application. In response to this situation, we propose the invariance-based explicit reference control (IERC) which is composed of double-invariance-based explicit reference governor (DIERG) and anti-windup controller (AWC). Specifically, the DIERG forces the system states at the intersection of two invariant sets including the constraint-based invariant set and performance-based invariant set; the AWC adopts amplified artificial amplitudes in control constraints to make the obtained two invariant sets tolerant to some degree of saturation. The advantages of the proposed design methodology are illustrated through the simulation studies.

MSC:

93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Cao, Y. Y.; Lin, Z. L., \( H_\infty\) Antiwindup design for linear systems subject to input saturation, Journal of Guidance, Control, and Dynamics, 25, 3, 455-463 (2002)
[2] Casavola, A.; Mosca, E.; Angeli, D., Robust command governors for constrained linear systems, IEEE Transactions on Automatic Control, 45, 11, 2071-2077 (2000) · Zbl 0991.93103
[3] Cristofaro, A.; Galeani, S.; Onori, S.; Zaccarian, L., A switched and scheduled design for model recovery anti-windup of linear plants, European Journal of Control, 46, 23-35 (2019) · Zbl 1412.93041
[4] Galeani, S.; Tarbouriech, S.; Turner, M.; Zaccarian, L., A tutorial on modern anti-windup design, European Journal of Control, 15, 3-4, 418-440 (2009) · Zbl 1298.93164
[5] Garone, E.; Cairano, S. D.; Kolmanovsky, I., Reference and command governors for systems with constraints: A survey on theory and applications, Automatica, 75, 306-328 (2017) · Zbl 1352.93046
[6] Garone, E.; Di Cairano, S.; Kolmanovsky, I., Reference and command governors for systems with constraints: A survey on theory and applications, Automatica, 75, 306-328 (2017) · Zbl 1352.93046
[7] Garone, E.; Nicotra, M.; Ntogramatzidis, L., Explicit reference governor for linear systems, International Journal of Control, 91, 6, 1415-1430 (2018) · Zbl 1390.93349
[8] Gilbert, E.; Kolmanovsky, I., Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor, Automatica, 38, 12, 2063-2073 (2002) · Zbl 1046.93020
[9] Gilbert, E. G.; Ong, C.-J., Constrained linear systems with hard constraints and disturbances: An extended command governor with large domain of attraction, Automatica, 47, 2, 334-340 (2011) · Zbl 1207.93035
[10] Grimm, G.; Hatfield, J.; Postlethwaite, I.; Teel, A. R.; Turner, M. C.; Zaccarian, L., Antiwindup for stable linear systems with input saturation: an \(\text{LMI} \)-based synthesis, IEEE Transactions on Automatic Control, 48, 9, 1509-1525 (2003) · Zbl 1364.93635
[11] Grimm, G.; Teel, A. R.; Zaccarian, L., Linear \(\text{LMI} \)-based external anti-windup augmentation for stable linear systems, Automatica, 40, 1987-1996 (2004) · Zbl 1059.93048
[12] Grimm, G.; Teel, A. R.; Zaccarian, L., Robust linear anti-windup synthesis for recovery of unconstrained performance, International Journal of Robust Nonlinear Control, 14, 13-14, 1133-1168 (2004) · Zbl 1056.93024
[13] Hosseinzadeh, M.; Garone, E., An explicit reference governor for the intersection of concave constraints, IEEE Transactions on Automatic Control, 65, 1, 1-11 (2020) · Zbl 1483.93243
[14] Hu, T.; Teel, A. R.; Zaccarian, L., Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance, Automatica, 44, 2, 512-519 (2009) · Zbl 1283.93120
[15] Kalabić, U. V.; Kolmanovsky, I. V.; Gilbert, E. G., Reduced order extended command governor, Automatica, 50, 5, 1466-1472 (2014) · Zbl 1296.93018
[16] Kalabić, U. V.; Li, N. I.; Vermillion, C.; Kolmanovsky, I. V., Reference governors for chance-constrained systems, Automatica, 109, Article 108500 pp. (2019) · Zbl 1429.93357
[17] Köhler, J.; Müller, M. A.; Allgöwer, F., Nonlinear reference tracking: An economic model predictive control perspective, IEEE Transactions on Automatic Control, 64, 1, 254-269 (2019) · Zbl 1423.93146
[18] Li, N.; Girard, A.; Kolmanovsky, I., Chance-constrained controller state and reference governor, Automatica, 133, Article 109864 pp. (2021) · Zbl 1480.93407
[19] Liu, C.; Li, H.; Gao, J.; Xu, D., Robust self-triggered min-max model predictive control for discrete-time nonlinear systems, Automatica, 89, 333-339 (2018) · Zbl 1388.93038
[20] Lopes, A. N.D.; Leite, V. J.S.; Silva, L. F.P.; Guelton, K., Anti-windup \(\text{TS}\) fuzzy \(\text{PI} \)-like control for discrete-time nonlinear systems with saturated actuators, International Journal of Fuzzy Systems, 22, 1, 46-61 (2020)
[21] Lucia, W.; Franzè, G., Stabilization and reference tracking for constrained switching systems: A predictive control approach, International Journal of Adaptive Control and Signal Processing, 31, 12, 1871-1884 (2017) · Zbl 1383.93069
[22] McDonough, K.; Kolmanovsky, I., Controller state and reference governors for discrete-time linear systems with pointwise-in-time state and control constraints, (2015 American control conference (ACC) (2015)), 3607-3612
[23] Morales, R.; Li, G.; Heath, W., Anti-windup and the preservation of robustness against structured norm-bounded uncertainty, International Journal of Robust Nonlinear Control, 24, 17, 2640-2652 (2014) · Zbl 1305.93162
[24] Nicotra, M. M.; Garone, E., The explicit reference governor: A general framework for the closed-form control of constrained nonlinear systems, IEEE Control System Magazine, 38, 4, 89-107 (2018) · Zbl 1477.93154
[25] Nicotra, M. M., Naldi, R., & Garone, E. (2016). A robust explicit reference governor for constrained control of unmanned aerial vehicles. In American control conference (pp. 6284-6289). Boston, MA, USA.
[26] Nicotra, M. M.; Nguyen, T. W.; Garone, E.; Kolmanovsky, I. V., Explicit reference governor for the constrained control of linear time-delay systems, IEEE Transactions on Automatic Control, 64, 7, 2883-2889 (2019) · Zbl 1482.93279
[27] Sajjadi-Kia, S.; Jabbari, F., Multi-stage anti-windup compensation for open-loop stable plants, IEEE Transactions on Automatic Control, 56, 9, 2166-2172 (2011) · Zbl 1368.93206
[28] Stevens, B. L.; Lewis, F. L.; Johnson, E. N., Aircraft control and simulation (2015), Wiley-Interscience: Wiley-Interscience New York
[29] Tarbouriech, S.; Garcia, G.; Gomes da Silva, J.a. M.; Queinnec, I., Stability and stabilization of linear systems with saturating actuators (2011), Springer: Springer London · Zbl 1279.93004
[30] Tarbouriech, S.; Turner, M., Anti-windup design: An overview of some recent advances and open problems, IET Control Theory and Applications, 3, 1, 1-19 (2009)
[31] Turner, M. C.; Herrmann, G.; Postlethwaite, I., Incorporating robustness requirements into antiwindup design, IEEE Transactions on Automatic Control, 52, 10, 1842-1855 (2007) · Zbl 1366.93310
[32] Wang, P.; Ge, S. S.; Zhang, X.; Yu, D., Output-based event-triggered cooperative robust regulation for constrained heterogeneous multiagent systems, IEEE Transactions on Cybernetics, 1-12 (2020)
[33] Wang, P.; Zhang, X. B.; Zhu, J. H., Integrated missile guidance and control: A novel explicit reference governor using disturbance observer, IEEE Transactions on Industrial Electronics, 66, 7, 5487-5496 (2019)
[34] Zaccarian, L.; Li, Y.; Weyer, E.; Cantoni, M.; Teel, A. R., Anti-windup for marginally stable plants and its application to open water channel control systems, Control Engineering Practice, 15, 2, 261-272 (2007)
[35] Zaccarian, L.; Teel, A. R., Modern anti-windup synthesis: Control augmentation for actuator saturation (2011), Princeton University Press: Princeton University Press Princeton, New Jersey
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.