×

Support varieties for Weyl modules over bad primes. (English) Zbl 1123.20038

The study of cohomological support varieties has led to numerous advances in many areas of representation theory. However, there remains a need for explicit computations of support varieties. Let \(G\) be a reductive algebraic group over an algebraically closed field of prime characteristic \(p>0\), and let \(G_1\) denote the first Frobenius kernel of \(G\). The representation theory of \(G_1\) is equivalent to the representation theory of the restricted enveloping algebra of the Lie algebra of \(G\). A fundamental family of modules for \(G\) is the set of Weyl modules (parameterized by the dominant weights). These can be restricted to modules over \(G_1\). Under the assumption that \(p\) is good, the support varieties over \(G_1\) of Weyl modules were computed by D. K. Nakano, B. J. Parshall, and D. C. Vella [J. Reine Angew. Math. 547, 15-49 (2002; Zbl 1009.17013)], confirming a conjecture of J. C. Jantzen [Bull. Lond. Math. Soc. 19, 238-244 (1987; Zbl 0623.17008)].
The main result of this paper is a computation of these support varieties when \(p\) is not a good prime. In the bad prime case, a uniform description of the support varieties cannot be given. However, the authors do show that for all primes a common formula holds for the dimension of the support varieties in terms of a certain subset of roots determined by the highest weight of the Weyl module.
In general, the support variety of a \(G_1\)-module is contained in the restricted nullcone of the Lie algebra of \(G\). Moreover, in the case that the module is a rational \(G\)-module (such as a Weyl module), the support variety is closed under the adjoint action of \(G\) on its Lie algebra. In the good prime case, the support variety of a Weyl module is always the closure of a Richardson orbit. The computations here involve investigations of orbits and previous computations of the restricted nullcone over bad primes by the authors [J. Algebra 292, No. 1, 65-99 (2005; Zbl 1124.17003)].
The paper concludes with some interesting observations: these support varieties are irreducible; for bad primes, the closures of all but possibly three orbits in the restricted nullcone can be realized as the support variety of a module; and all but one Richardson orbit in the restricted nullcone has closure equal to the support variety of a Weyl module.

MSC:

20G05 Representation theory for linear algebraic groups
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B45 Lie algebras of linear algebraic groups
17B50 Modular Lie (super)algebras
20G10 Cohomology theory for linear algebraic groups

Software:

Magma; GAP
Full Text: DOI

References:

[1] Alperin, J. L., Periodicity in groups, Illinois J. Math., 21, 776-783 (1977) · Zbl 0389.20004
[2] Benson, D. J., Representations and Cohomology, Volumes I and II (1991), Cambridge University Press · Zbl 0731.20001
[3] Benson, D. J.; Nakano, D. K., The nucleus for restricted Lie algebras, Proc. Amer. Math. Soc., 131, 3395-3405 (2003) · Zbl 1044.20032
[4] Bosma, W.; Cannon, J., Handbook on Magma Functions (1996), Sydney University: Sydney University Sydney
[5] Bosma, W.; Cannon, J.; Playoust, C., The Magma Algebra System I: The user language, J. Symbolic Comput., 24, 235-265 (1997) · Zbl 0898.68039
[6] Carlson, J. F., The varieties and cohomology ring of a module, J. Algebra, 85, 104-143 (1983) · Zbl 0526.20040
[7] Carlson, J. F., The variety of an indecomposable module is connected, Invent. Math., 77, 291-299 (1984) · Zbl 0543.20032
[8] J.F. Carlson, Z. Lin, D.K. Nakano, Support varieties for modules over Chevalley groups and classical Lie algebras, Trans. Amer. Math. Soc., in press; J.F. Carlson, Z. Lin, D.K. Nakano, Support varieties for modules over Chevalley groups and classical Lie algebras, Trans. Amer. Math. Soc., in press · Zbl 1182.20039
[9] Carlson, J. F.; Lin, Z.; Nakano, D. K.; Parshall, B. J., The restricted nullcone, (Contemp. Math., vol. 325 (2003)), 51-75 · Zbl 1059.17013
[10] Carter, R. W., Finite Groups of Lie Type (1985), Wiley-Interscience · Zbl 0458.20005
[11] Collingwood, D. H.; McGovern, W. M., Nilpotent Orbits in Semisimple Lie Algebras (1993), Van Nostrand Reinhold · Zbl 0972.17008
[12] Erdmann, K.; Holloway, M., Rank varieties and projectivity for a class of local algebras, Math. Z., 247, 441-460 (2004) · Zbl 1078.16008
[13] Friedlander, E. M.; Parshall, B. J., Support varieties for restricted Lie algebras, Invent. Math., 86, 553-562 (1986) · Zbl 0626.17010
[14] Friedlander, E. M.; Pevtsova, J., Representation theoretic support spaces for finite group schemes, Amer. J. Math., 127, 2, 379-420 (2005) · Zbl 1072.20009
[15] Friedlander, E. M.; Suslin, A., Cohomology of finite group schemes over a field, Invent. Math., 127, 2, 209-270 (1997) · Zbl 0945.14028
[16] Gordon, I.; Premet, A., Block representation type of reduced enveloping algebras, Trans. Amer. Math. Soc., 354, 1549-1581 (2002) · Zbl 1054.20025
[17] R. Großer, Degenerationsverhalten nilpotenter Konjugationsklassen klassischer Lie-Algebren in Charakteristic 2, Dissertation, Bonn, 1980; R. Großer, Degenerationsverhalten nilpotenter Konjugationsklassen klassischer Lie-Algebren in Charakteristic 2, Dissertation, Bonn, 1980 · Zbl 0472.17003
[18] Hesselink, W. H., Nilpotency in classical groups over a field of characteristic 2, Math. Z., 166, 165-181 (1979) · Zbl 0387.20038
[19] Hirai, T., On Richardson classes of unipotent elements in semisimple algebraic groups, Proc. Japan Acad. Ser. A Math. Sci., 57, 367-372 (1981) · Zbl 0503.20015
[20] Holt, D. F.; Spaltenstein, N., Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, J. Aust. Math. Soc. Ser. A, 38, 330-350 (1985) · Zbl 0575.17007
[21] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0254.17004
[22] Humphreys, J. E., Conjugacy Classes in Semisimple Algebraic Groups, Math. Surveys Monogr., vol. 43 (1995), Amer. Math. Soc. · Zbl 0834.20048
[23] Jantzen, J. C., Kohomologie von \(p\)-Lie-algebren und nilpotente elemente, Abh. Math. Sem. Univ. Hamburg, 56, 191-219 (1986) · Zbl 0614.17008
[24] Jantzen, J. C., Support varieties of Weyl modules, Bull. London Math. Soc., 19, 238-244 (1987) · Zbl 0623.17008
[25] Jantzen, J. C., Representations of Algebraic Groups, Math. Surveys Monogr., vol. 107 (2003), Amer. Math. Soc. · Zbl 0612.20021
[26] Kac, V., Infinite Dimensional Lie Algebras (1990), Cambridge University Press · Zbl 0716.17022
[27] Lawther, R., Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra, 23, 11, 4125-4156 (1995) · Zbl 0880.20034
[28] Lawther, R., Correction to Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra, 26, 8, 2709 (1998)
[29] Lin, Z.; Nakano, D. K., Complexity for modules over finite Chevalley groups and classical Lie algebras, Invent. Math., 138, 85-101 (1999) · Zbl 0937.17006
[30] Lusztig, G., On the finiteness of the number of unipotent classes, Invent. Math., 34, 201-213 (1976) · Zbl 0371.20039
[31] Lusztig, G., Unipotent elements in small characteristic, Transform. Groups, 10, 449-487 (2005) · Zbl 1107.20036
[32] Nakano, D. K.; Palmieri, J. H., Support varieties for the Steenrod algebra, Math. Z., 227, 663-684 (1998) · Zbl 0901.55008
[33] Nakano, D. K.; Parshall, B. J.; Vella, D. C., Support varieties for algebraic groups, J. Reine Angew. Math., 547, 15-49 (2002) · Zbl 1009.17013
[34] Nakano, D. K.; Tanisaki, T., On the realization of orbit closures as support varieties, J. Pure Appl. Algebra, 206, 66-82 (2006) · Zbl 1156.14326
[35] Ostrik, V., Support varieties for quantum groups, Funct. Anal. Appl., 32, 237-246 (1998) · Zbl 0981.17010
[36] Schönert, M., GAP — Groups, Algorithms, and Programming (1995), Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule: Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule Aachen, Germany
[37] Snashall, N.; Solberg, O., Support varieties and Hochschild cohomology rings, Proc. London Math. Soc., 88, 705-732 (2004) · Zbl 1067.16010
[38] Spaltenstein, N., Nilpotent classes and sheets of Lie algebras in bad characteristic, Math. Z., 181, 31-48 (1982) · Zbl 0475.17003
[39] Spaltenstein, N., On unipotent and nilpotent elements of groups of type \(E_6\), J. London Math. Soc., 27, 413-420 (1983) · Zbl 0481.20027
[40] Spaltenstein, N., Nilpotent classes in Lie algebras of type \(F_4\) over fields of characteristic 2, J. Fac. Sci. Univ. Tokyo, 30, 3, 517-524 (1984) · Zbl 0533.17004
[41] Suslin, A.; Friedlander, E. M.; Bendel, C. P., Infinitesimal one-parameter subgroups and cohomology, J. Amer. Math. Soc., 10, 3, 693-728 (1997) · Zbl 0960.14023
[42] Suslin, A.; Friedlander, E. M.; Bendel, C. P., Support varieties for infinitesimal group schemes, J. Amer. Math. Soc., 10, 3, 729-759 (1997) · Zbl 0960.14024
[43] Varieties of nilpotent elements for simple Lie algebras I: Good primes, J. Algebra, 280, 719-737 (2004) · Zbl 1063.17007
[44] Varieties of nilpotent elements for simple Lie algebras II: Bad primes, J. Algebra, 292, 1, 65-99 (2005) · Zbl 1124.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.